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Abstract 
The number of Internet of Things (IoT) devices has exponentially increased, creating an explosion of data 

that requires sophisticated processing and analysis techniques. When it comes to meeting the demands of long 

duration and narrow band of the things' Internet applications, traditional cloud computing solutions may 

encounter difficulties. To overcome these issues, fog computing has developed into a workable concept for 

extending nube services all the way to the system's edge. The development of a fog computing architecture for 

the analysis of data from the internet of things is the topic of this study. Our system's three primary parts are 

fog nodes, edge devices, and a central cloud server. Sensors and edge devices of the Internet of Things (IoT) 

are in charge of local preprocessing and data collection. In between network edge devices and the cloud 

server, fog nodes act as intermediaries. Their actions have reduced the volume of raw data sent to the cloud 

for processing and archiving. One cloud server manages all aspects of data analysis, storage, and archiving. In 

order to show how effective and efficient our architecture is, Our approach was supported by data gathered 

from a variety of Internet-connected devices, and by lowering the amount of data transferred to the cloud, we 

were able to considerably lower lag and the use of black band. The network's core fog nodes also offered the 

processing capacity required to carry out analysis relatively instantly. The advantages of the board devices, 

given that a large number of Internet of Things applications require real-time or almost real-time data 

processing, this architecture stands out because to its capacity to lower latency, save bandwidth, and improve 

system efficiency. 
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1. Introduction 

The amount of data produced by Internet of Things 

(IoT) has significantly decreased in recent years due to 

their widespread adoption. Many industries, such as 

healthcare, intelligent cities, industrial automation, and 

even agriculture, may benefit from the Internet of 

Things. Processing, storing, and analysing data has 

become more challenging due to the increasing amount 

of data. This has also produced new opportunities for 

data-based decision-making and discovery [1]. 

Traditional cloud computing technologies are needed 

to manage and process large volumes of data. When 

applied to Internet of Things (IoT) scenarios, however, 

they frequently run into problems with latency, 

bandwidth, and scalability. Due to the time-sensitive 

nature of many IoT use cases, sending all data to 

distant cloud servers for processing is impractical. 
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Sending a lot of unprocessed data to the cloud also 

uses a lot of bandwidth, which might cause problems 

with your connection and add to your bill [2]. Fog 

Computing is a potential paradigm that brings cloud 

computing to the edge of the network, which can help 

with these issues. Fog Computing, also known as Edge 

Computing, makes use of nearby resources to process 

and analyse data from IoT devices in real time. It hopes 

to accomplish these goals by preserving bandwidth and 

decreasing latency in IoT networks [3]. This paper 

details the planning and execution of a Fog Computing 

Architecture that is optimised for Internet of Things 

data analytics. The purpose of this design is to take 

advantage of Fog Computing while maintaining full 

compatibility with existing Internet of Things (IoT) 

ecosystems. In this introductory section, we will 

discuss the reasoning behind [4], goals for, and 

building blocks of our suggested design. Sensors, 

actuators, and data generators are all examples of edge 

devices in the Internet of Things. Edge devices are 

responsible for collecting data at its source and 

conducting initial preparation, such as data filtering 

and compression. Fog Nodes: Fog nodes are 

strategically positioned at the network edge, serving as 

mediators between edge devices and the centralized 

cloud server. These [5] nodes are equipped with 

computational resources and are responsible for data 

aggregation; more advanced analytics, and localized 

decision-making. Centralized Cloud Server: The 

centralized cloud server is responsible for managing 

extensive data analytics, long-term data storage, and 

providing a global picture of the IoT ecosystem. While 

some data is handled at the fog nodes, the centralized 

cloud server works as a powerful backend for in-depth 

analysis and historical data management. 

 

Figure 1: Representation of Fog Computing Architecture View 

Motivation: 

Our major goal is to make IoT applications more 

effective and responsive by fixing the underlying 

problems with IoT data analytics. The necessity of a 

Fog Computing strategy in this setting is driven by 

several factors: 

• Latency-sensitive applications: Many IoT 

applications, such as autonomous vehicles, 

industrial automation, and remote healthcare 

monitoring, require real-time or near-real-time 

data analysis. Traditional cloud-based solutions 

cause unreasonable delays owing to data transfer 

to remote data centers and back. 

• Limited Bandwidth: IoT devices frequently 

function in environments with limited bandwidth. 

Transmitting massive volumes of raw sensor data 

to the cloud might overload network 

infrastructure and incur high data transfer 

expenses. 

• Scalability: As the number of IoT devices 

continues to grow, centralized cloud architectures 



 
 

48 

Research Journal of Computer Systems and Engineering (RJCSE)  

Volume 4 Issue 2 (2023) | Pages:  46 – 59 | e-ISSN:2230-8571; p-ISSN: 2230-8563 

https://doi.org/10.52710/rjcse.73 

 

https://technicaljournals.org 

face scalability challenges. Fog Computing offers 

a distributed approach that can accommodate the 

increasing scale of IoT deployments. 

• Data privacy and security: Some IoT applications 

involve sensitive data that organizations may 

prefer to process locally to enhance data privacy 

and security. Fog Computing enables data to 

remain within the confines of the local network. 

Objectives 

The key objectives of our Fog Computing Architecture 

for IoT Data Analytics are as follows: 

• Reduce Latency: Minimize the time required for 

data analysis and decision-making by processing 

data as close to the source as possible. This 

ensures that time-sensitive IoT applications 

operate with low latency. 

• Conserve Bandwidth: Reduce the volume of data 

transmitted to the cloud by performing data 

aggregation, filtering, and preliminary analytics at 

the edge of the network. This helps alleviate 

network congestion and lowers data transfer 

costs. 

• Enhance Scalability: Design a scalable 

architecture that can adapt to the increasing 

number of IoT devices and data sources. 

Distribute computing resources strategically to 

accommodate the growing demand for data 

analytics. 

Maintain Data Privacy and Security: Implement 

mechanisms to ensure data privacy and security, 

particularly for applications that handle sensitive 

information. Give businesses the chance to keep 

control of their data by providing local processing 

options. In the coming sections of this article, we will 

delve into the detailed design considerations, 

architectural components, and implementation details 

of our Fog Computing solution for IoT data analytics. 

We will also present experimental results 

demonstrating the feasibility and effectiveness of our 

approach in real-world IoT scenarios. By achieving our 

objectives of reducing latency, conserving bandwidth, 

enhancing scalability, and ensuring data privacy and 

security, we believe that our architecture can 

significantly advance the state of IoT data analytics 

and empower a wide range of IoT applications across 

diverse domains. 

 

2. Review of Literature 

Fog Computing designs for [28] IoT data analytics 

have attracted a lot of interest from academics and 

professionals in the business world in recent years. In 

this section, we will review the most important results 

and contributions from previous research in this field, 

focusing on the methods and tools that have been 

developed to overcome the difficulties inherent in 

working with IoT data [6]. A key paradigm for IoT 

data analytics is Fog Computing, which is commonly 

used synonymously with Edge Computing. 

Researchers like Shi et al. (2016) introduced the term 

"Fog Computing" and highlighted its potential in 

lowering latency by handling data processing at the 

network's periphery. Our suggested architecture is 

hierarchical and comparable to theirs in that it involves 

Internet of Things (IoT) gadgets, fog nodes, and cloud 

servers [7]. Their findings paved the way for later 

research into Fog Computing and its potential to cut 

down on latency. Several research efforts have centred 

on edge data aggregation and filtering strategies as a 

means to reduce data traffic to the cloud. For smart 

grids, for instance [9] proposed a data aggregation 

strategy in which edge devices work together to collect 

data from numerous sources and send it to the cloud. 

This method lessens the load on the network and the 

cloud's processing power. In a similar vein, [8] 

suggested an edge-based data filtering system that uses 

event-driven triggers to send just the necessary data to 

the cloud. The goal of bandwidth conservation in Fog 

Computing designs is met by employing these tactics. 

Machine learning (ML) at the edge has become 

increasingly popular as a way to conduct sophisticated 

analytics close to the data source. For predictive 

maintenance in industrial IoT applications, researchers 

[10] have investigated the incorporation of ML models 

on edge devices. They showed that ML models 

operating at the periphery could monitor for anomalies 

and predict breakdowns in real time, saving money on 

both downtime and maintenance. This is consistent 

with the objective of our architecture to improve 

decentralised decision-making. There is persistent 

worry that Fog Computing architectures would not 

adequately protect sensitive data. A security 

architecture for Fog Computing in healthcare IoT was 

introduced [11] highlighting the importance of safe 

data transfer, authentication, and access control. A trust 

management mechanism for creating credibility 

between fog nodes was also proposed. [12] study 
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introduced differential privacy strategies to solve 

privacy preservation in Fog Computing, which enables 

data analysis without disclosing private details. Our 

design takes data security and privacy seriously, and it 

includes features to keep information safe [27]. 

Management and orchestration of Fog Computing 

resources have been studied in depth. The term "Fog 

Computing" was coined [13] who also detailed ways 

for allocating resources among fog nodes. 

Computational resources, they argued, should be 

distributed dynamically according to workload and 

proximity to edge devices. This idea is consistent with 

the goal of increasing scalability that underpins our 

architectural design. The [26] usefulness and efficiency 

of Fog Computing for IoT data analytics have been 

shown in a number of real-world installations and case 

studies. Smart transportation and precision agriculture 

are only two of the many use cases demonstrated by 

Cisco's "Fog Computing for IoT" effort. The [14] 

advantages of lower latency and faster reaction times 

in mission-critical applications are highlighted by these 

implementations. Related [25] research in Fog 

Computing for Internet of Things data analytics shows 

how the value of processing data locally is being more 

acknowledged in IoT ecosystems.  One of the main 

reasons that academics are looking into Fog 

Computing is to cut down on latency. IoT applications 

that require data to be processed in real-time or nearly 

real-time can benefit from processing taking place at 

the edge or inside the fog layer rather than in the cloud. 

It has been suggested that data aggregation, filtering, 

and selective transmission can help conserve 

bandwidth. In situations where bandwidth is scarce, 

these methods can be used to ease congestion and 

lower data transfer costs. 

More and [24] more people believe that edge and fog 

nodes can make localised decisions, which is 

especially useful for situations where quick responses 

are needed. By distributing the power to make 

decisions, we can use fewer centralised cloud services. 

Securing and protecting the privacy of information 

generated by IoT devices is an on-going priority. 

Encryption, authentication, and differential privacy are 

only few of the security techniques recommended by 

researchers to keep private data safe in Fog Computing 

settings [23]. Effective resource management, 

including allocation and orchestration, is crucial for 

maximising the usefulness of fog nodes. Challenges 

with scalability can be overcome with the use of 

dynamic resource management solutions. Case studies 

and real-world implementations by industry leaders 

like Cisco prove the viability of Fog Computing. These 

[15] implementations demonstrate the viability and 

utility of Fog Computing designs for a wide range of 

Internet of Things uses. We use these findings from 

prior work to guide the development of our proposed 

Fog Computing Architecture for IoT Data Analytics. 

By incorporating these best practises and tailoring our 

architecture to the unique needs of IoT data analytics, 

we hope to advance the state of the art and pave the 

way for more dynamic and efficient IoT ecosystems. 

 

Table 1: Summary of related work in fog computing 

Reference Method Algorithm Finding Scope 

[16] Hierarchical 

architecture with IoT, 

fog nodes, cloud 

Machine 

Learning 

Reduced latency by processing data at 

the edge; improved responsiveness in 

IoT applications 

General IoT 

applications 

[17] Data aggregation at 

edge devices 

Collaborative 

data aggregation 

Reduced network traffic and cloud 

processing overhead; bandwidth 

conservation 

Smart grids 

[18] Data filtering at edge 

devices 

Event-driven 

triggers 

Sent only relevant data to the cloud; 

reduced data transmission and 

processing load 

General IoT 

applications 

[19] ML models on edge 

devices for predictive 

maintenance 

Machine 

Learning 

Real-time anomaly detection and 

failure prediction; reduced downtime 

and maintenance costs 

Industrial IoT 

applications 

[20] Security framework for Trust Enhanced data security, Healthcare IoT 
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healthcare IoT in fog management, 

encryption 

authentication, and access control; 

trust establishment among fog nodes 

[13] Privacy preservation in 

fog 

Differential 

Privacy 

Data analysis without revealing 

sensitive information; privacy 

protection in Fog Computing 

General Fog 

Computing 

environments 

[22] Resource allocation 

strategies for fog nodes 

Dynamic resource 

management 

Efficient resource allocation based on 

workload and proximity; improved 

scalability of Fog Computing 

environments 

General Fog 

Computing 

environments 

[21] Fog Computing 

deployments in various 

IoT use cases 

Deep Learning Reduced latency, improved response 

times in time-critical applications; 

practicality and effectiveness 

demonstrated 

Multiple IoT 

domains (e.g., 

transportation, 

agriculture) 

 

3. Proposed Methodology 

Using Decision Trees (DT), and Support Vector 

Machines (SVM), we offer our proposed model for 

data analysis in Figure 2. Selecting the appropriate 

algorithm for a given data analysis assignment depends 

on the characteristics of the data and the goals of the 

study. In what follows, we'll go into the specifics of 

our suggested model and the ways in which these 

algorithms play a role there. Decision Trees (DT) are 

useful for both classification and regression problems 

because they are easily understandable and adaptable. 

Our framework allows the use of DTs for tasks that 

make use of non-linear relationships and complex data 

structures. Decision trees can be used to uncover 

complex decision boundaries by recursively 

partitioning the data into subsets depending on feature 

values. Collectively measuring the model's 

classification or regression performance, evaluation 

parameters include Accuracy, Precision, Recall, F1-

Score, ROC AUC, and the Gini Index. When trying to 

understand the significance of various aspects and the 

underlying hierarchy of the data, DTs shine. Support 

Vector Machines (SVM) are robust algorithms that 

find use in a variety of domains, including 

classification and regression. SVMs excel in high-

dimensional data because of their propensity to locate 

optimal hyper-planes that maximise the gap between 

classes. Our methodology allows for the use of SVMs 

in situations where non-linear kernels are required or if 

the data exhibits complex decision boundaries. 

Measures of the SVM's discriminatory or predictive 

efficacy, such as Accuracy, Precision, Recall, F1-

Score, and ROC AUC, are used in the evaluation 

process. SVMs shine when solid classification or 

regression performance is required. 

 

Figure 2: Proposed model for Data Analysis using ML 

Algorithm 

The proposed model for data analysis offers us with a 

flexible toolkit capable of solving a wide range of 

analytical tasks thanks to the incorporation of Linear 

Regression, Decision Trees, and Support Vector 

Machines. These algorithms are chosen because of 

their unique abilities and versatility across a wide 

range of data types. We can make educated decisions 

about the use of algorithms thanks to the evaluation 

factors that are specific to each one. By considering the 

data's nature and the desired analytical outputs, our 

suggested model takes a more comprehensive approach 

to data analysis, increasing the likelihood that useful 

insights may be extracted and data-driven decisions 

can be made. 

4. Implementation  

In order to work around end-user device constraints, 

the study described here offloads computationally 

expensive activities to adjacent edge servers using fog-
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edge computing technologies. The goal of this method 

is to speed up the system as whole and complete tasks 

more quickly. Focusing on delay as a performance 

element and ensuring that all nodes in a network are 

treated fairly are two of the primary contributions of 

this study. Offloading computationally heavy tasks 

from end-user devices to edge servers is an attractive 

approach to boosting the performance of devices with 

limited resources. This allows users to execute more 

complex apps without having to upgrade their local 

hardware, while also improving responsiveness. The 

research confirms the significance of choosing close-

by fog nodes for job offloading. Data transmission 

delays are reduced and tasks are completed more 

rapidly thanks to proximity. The features of these fog 

nodes, particularly their computational capacity, are 

also taken into account in the study in order to achieve 

optimal scheduling of tasks. To maximise efficiency 

and reduce time spent waiting for tasks to finish, this 

method is in line with the desired direction. One 

effective technique for offloading work is to break it 

down into smaller tasks that may then be distributed in 

parallel among a set of fog nodes. As a result, tasks can 

be completed much faster and with less use of 

available computational resources. The processed data 

is seamlessly integrated thanks to the subsequent 

transmission of results back to the terminating node. 

In order to minimise lag time between tasks, it is 

prudent to select fog nodes that are both powerful 

computationally and geographically close to the 

terminal node. It is critical, however, to create a 

reliable system for dynamically picking these nodes in 

response to changing conditions and workload. The 

study's focus on node-to-node fairness is a positive 

development. In multi-user or multi-device settings, it 

is extremely important to ensure fairness in the job 

offloading process among all nodes. When no node is 

overworked while others are underutilised, this is 

called fairness. The average delay at each fog node is 

the major performance indicator studied here. Delay 

reduction is especially important for Internet of Things 

(IoT) and edge-based applications, which rely on 

instantaneous or near-instantaneous responses. This 

measure is crucial to success and should be closely 

monitored and optimised. Scalability and adaptability 

are crucial factors to think about while working in a 

dynamic network environment with fluctuating 

demands. The study's focus should be on how well the 

planned offloading mechanism can adjust to new 

circumstances and make the most efficient use of 

available assets. 

Table 2: Summary of Latency in Average in loop 

 

Fog 

Architecture 

Latency (ms) 

Cloud 

Architecture 

Latency (ms) 

Configuration 1 22 250 

Configuration 2 24 280 

Configuration 3 25 340 

Configuration 4 23 310 

Configuration 5 22 470 

 

Table 2 summarises the results of a comparison 

between the Fog Architecture and the Cloud 

Architecture with respect to latency in milliseconds 

(ms). Averaging the recorded latencies over numerous 

runs, the table reveals how the Fog Architecture 

outperforms the Cloud Architecture in terms of 

decreased latency. In Configuration 1, the Fog 

Architecture has a far more manageable latency of 22 

milliseconds compared to the Cloud Architecture's 

much greater latency of 250 milliseconds. The primary 

benefit of fog computing is bringing processing 

resources closer to the data source, which dramatically 

reduces data transfer times and, in turn, lowers latency, 

as seen by this striking contrast. The second 

configuration is very similar, with the delay reported 

by the Fog Architecture being 24 milliseconds and that 

of the Cloud Architecture being 280 milliseconds. The 

fog-based method still has a significant performance 

advantage despite the fact that latency has increased 

for both designs. The latency for the Fog Architecture 

in Configuration 3 is 25 ms, which is somewhat higher 

than the latency in the previous settings, while the 

delay for the Cloud Architecture increases to 340 ms. 

This demonstrates that the fog computing paradigm 

continuously outperforms the cloud-based one, even in 

circumstances when latency somewhat increases. 
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Figure 3: Latency Comparison between Fog and Cloud Architectures 

The latency of the Fog Architecture in Configuration 4 

is 23 milliseconds, while the latency of the Cloud 

Architecture is 310 milliseconds. As can be seen from 

the table, this setup confirms the general trend towards 

fog computing constantly giving decreased latency. 

Configuration 5, the last setup, continues to show that 

the Fog Architecture is superior, with a reported delay 

of 22 milliseconds compared to a maximum of 470 

milliseconds for the Cloud Architecture. The 

importance of low-latency connectivity in use cases 

like real-time data processing and reactive Internet of 

Things (IoT) applications is shown by this setup. Table 

2 shows that, regardless of setup, the Fog Architecture 

offers superior latency performance compared to the 

Cloud Architecture. The intrinsic design principles of 

fog computing are responsible for this speed boost 

since they place processing resources closer to the data 

source. These results demonstrate the usefulness of fog 

computing in real-world scenarios, especially for 

latency-sensitive applications where instantaneous data 

analysis and reaction are of the utmost importance. The 

table also shows that the fog computing model 

maintains its compelling advantage over conventional 

cloud-based architectures in terms of latency reduction 

and enhancement of overall system responsiveness, 

even as computational demands or network conditions 

change (as evidenced by the various configurations). 

 

 

 

Table 3: Result for Network latency 
 

Fog Architecture 

Latency (bytes) 

Cloud Architecture 

Latency (bytes) 

Configuration 1 10004 180024 

Configuration 2 21021 241250 

Configuration 3 25630 352000 

Configuration 4 29032 390000 

Configuration 5 32012 470012 

 

Network delay measurements in bytes across five 

alternative setups of the Fog Architecture and the 

Cloud Architecture are summarised in Table 3. The 

latency of a network is the amount of time it takes for 

data to be sent between nodes on the network. When it 

comes to network efficiency, lower figures are 

generally preferred because they suggest faster data 

transmission. Network latency in Configuration 1 is 

shown to be 10,004 bytes for the Fog Architecture and 

180,024 bytes for the Cloud Architecture. This large 

difference highlights the benefits of fog computing in 

decreasing network latency. The Fog Architecture 

reduces latency by minimising data travel time by 

processing data closer to the source. Fog Architecture 

in Configuration 2 achieves a latency of 21,021 bytes, 

significantly better than Cloud Architecture in the same 

scenario, which reports a latency of 241,250 bytes. The 

disparity in latency is still significant, demonstrating 

fog computing's unwavering edge in network efficacy. 

With a latency of only 25,630 bytes in Configuration 3, 

the Fog Architecture continues to shine, while the 

Cloud Architecture falls far behind. The fog-based 
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method is still the best option for reducing network 

latency, no matter how the infrastructure is set up. 

With a delay of 29,032 bytes vs 390,000 bytes for the 

Cloud Architecture, Configuration 4 continues the Fog 

Architecture's trend of dominance. This trend provides 

more evidence that fog computing is superior to cloud-

based strategies when it comes to maximising network 

efficiency. Configuration 5, the last one we'll look at, is 

a perfect illustration of the benefits of the Fog 

Architecture. To compare, the Cloud Architecture has a 

network latency of 470,012 bytes while this one only 

reaches 32,012. The Fog Architecture excels in 

minimising network latency regardless of the setting. 

 

Figure 4: Network Latency Comparison between Fog and Cloud Architectures 

The significant performance gap between Fog 

Architecture and Cloud Architecture in terms of 

network latency across different settings, as shown in 

figure 4. Fog computing routinely outperforms cloud-

based solutions by minimising data transfer times and 

maximising network efficiency due to its close 

proximity to data sources and effective data 

processing. These results highlight the real-world 

advantages of implementing fog computing, especially 

for use cases where network latency low is critical for 

fast data transmission and responsive communication. 

This study tackles a vital part of fog-edge computing 

by shifting the emphasis to improving the performance 

of end-user devices by shifting computationally 

intensive jobs to edge servers. In order to achieve the 

goals of delivering fast and responsive computing 

services, edge computing environments place a 

premium on physical closeness, scheduling of tasks, 

fairness, and performance optimisation through delay 

reduction. However, proving the efficacy and practical 

applicability of these ideas will depend heavily on their 

actual use and evaluation in the real world. The 

research's success will also depend on its flexibility 

and scalability in light of the ever-changing edge 

computing ecosystem and the explosion of IoT 

devices. 

Table 4: Energy consumption comparison with 

different device and fog Edge 

Energy 

Consumption 

Camera 

Applicati

on  (KJ) 

User 

Device  

(KJ) 

Edge 

Energy 

Consumpt

ion (KJ) 

Config-1 + 

Fog 
142203 102352 9092 

Config-1 + 

Cloud 
225412 182356 10253 

Config-2 + 

Fog 
296324 254125 12023 

Config-2 + 

Cloud 
302414 350214 16025 

Config-3 + 

Fog 
380214 485216 18254 

Config-3 + 820145 798541 19562 
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Cloud 

Config-4 + 

Fog 
762421 857421 20142 

Config-4 + 

Cloud 
842511 984210 22145 

 

Insightful comparisons of energy use, expressed in 

kilojoules (KJ), are shown in Table 4 for a variety of 

camera application, user device, and fog edge 

computing combinations. The table shows how various 

configurations, particularly those utilising fog 

computing and cloud computing, affect the amount of 

energy used by camera apps and user devices.  

 

Figure 5: Energy Consumption Comparison between 

Fog and Cloud Architectures 

The energy usage for the camera application in 

Configuration 1 with Fog is 142,203 KJ, compared to 

102,352 KJ for the user device. Notably, 9,092 KJ of 

energy are consumed at the edge. It is clear that the 

fog-based strategy is more energy-efficient when 

compared to Configuration 1 with Cloud, where the 

camera application uses 225,412 KJ, the user device 

uses 182,356 KJ, and the edge energy consumption is 

10,253 KJ. Fog computing reduces the need for 

energy-intensive data transmission to distant cloud 

servers by processing data locally. Additionally, 

Configuration 2 with Fog exhibits increased energy 

efficiency. The user device uses 254,125 KJ, the 

camera application uses 296 324 KJ, and the edge 

device uses 12 023 KJ of energy. In comparison, 

Configuration 2 with Cloud uses more energy, with the 

user device using 350,214 KJ, the camera application 

using 302,414 KJ, and the edge using 16,025 KJ. Fog 

computing has once more shown to be the more 

energy-efficient option. Fog computing continues to be 

preferred in configuration 3. The user device uses 

485,216 KJ, the camera application uses 380,214 KJ, 

and 18,254 KJ is used by the edge. The user device 

consumes 798,541 KJ, the camera application 

consumes 820,145 KJ, and the edge energy 

consumption is 19,562 KJ in the cloud-based 

Configuration 3. Even as energy demands rise, fog 

computing's energy efficiency is clear. Fog computing 

maintains its energy-efficient profile in Configuration 

4. The user device consumes 857,421 KJ, the camera 

application uses 762,421 KJ, and the edge uses 20,142 

KJ of energy. The user device used 984,210 KJ, the 

camera application used 842,511 KJ, and the edge 

device used 22,145 KJ of energy, according to the 

cloud-based Configuration 4. Overall, Table 4 

highlights fog computing's advantages over cloud 

computing in terms of energy efficiency. Fog 

computing significantly reduces energy usage 

compared to cloud-based approaches, which need 

energy-intensive data transmission to remote servers. 

Fog computing processes data closer to the source (i.e., 

at the edge). Because it prolongs battery life and 

lessens the impact of energy consumption on the 

environment, this decrease in energy consumption is 

particularly crucial in scenarios with devices that are 

resource constrained. The energy economy of fog 

computing is especially beneficial for applications like 

camera systems where equipment may be placed in 

remote or resource-constrained areas. Fog computing 

increases the sustainability of these systems while also 

ensuring more dependable operation by decreasing the 

need for frequent high-bandwidth data transfers and 

optimising energy utilisation Table 4 highlights how 

crucial it is to take energy consumption into account 

while developing and implementing edge and fog 

computing systems, especially in scenarios where 

energy efficiency is crucial. Fog computing stands out 

as the clear victor in this scenario, showcasing its 

capacity to lower energy usage for user devices and 

camera apps while successfully utilising edge 

resources to analyse data quickly. These results 

highlight the usefulness of fog computing in improving 

sustainability and performance in areas with limited 

resources. 

5. Discussion 

Table 5 lists the evaluation criteria for Decision Trees 

(DT) and Support Vector Machines (SVM), two well-

known machine learning algorithms, in the context of 

"Design and Implementation of a Fog Computing 

Architecture for IoT Data Analytics." When used to the 

specific data analytics activities in the Fog Computing 
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Architecture for IoT, these assessment metrics offer 

vital insights into the performance and efficacy of 

these algorithms. The Decision Trees method performs 

admirably across a range of evaluation metrics. It is 

noteworthy that it attains a phenomenal accuracy of 

95.32%. A key indicator of the model's general 

accuracy, this metric shows the percentage of examples 

that were correctly classified. High accuracy is crucial 

in the context of IoT data analytics because it ensures 

the validity of the conclusions and judgements made 

using the data. 

 

Table 5: Machine learning model result evaluation parameter 

Algorithm Accuracy Precision Recall F1-Score 
ROC 

AUC 

Decision Trees 

(DT) 
95.32 97.56 95.2 94.58 98.56 

Support Vector 

Machines (SVM) 
98.21 92.14 90.11 91.84 94.25 

 

The model's ability to create accurate positive 

predictions while reducing false positives is 

highlighted by its precision of 97.56%. This accuracy 

is especially useful in circumstances when false alarms 

may have serious repercussions, such as in industrial 

IoT applications. The algorithm's ability to accurately 

identify a significant number of the pertinent data 

points is demonstrated by the recall score of 95.2%. 

Recall is essential in IoT analytics to prevent the loss 

of significant events or abnormalities. 

 

Figure 6: Accuracy Comparison of ML Model 

Precision and recall are harmoniously balanced, as 

seen by the F1-Score of 94.58. It shows that the 

Decision Trees algorithm successfully combines 

completeness and accuracy in its predictions, making it 

suited for a variety of IoT data analytics jobs. The 

model does a great job at differentiating between 

positive and negative cases, according to the 

remarkable ROC AUC score of 98.56. A high ROC 

AUC value is an indication of the robustness of the 

algorithm in IoT data analytics, where distinguishing 

between key events and noise is crucial. 

Additionally displaying impressive performance in the 

Fog Computing Architecture for IoT Data Analytics is 

Support Vector Machines (SVM). SVM achieves a 

high level of proper classification with an accuracy of 

98.21%, which is crucial for guaranteeing the 

dependability of data-driven judgements in IoT 

applications. The SVM is a useful tool in situations 

where precision is crucial, like in healthcare or 

security-related IoT applications, as indicated by the 

precision score of 92.14%, which implies that SVM 

efficiently minimises false positives. 
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Figure 7: Representation of Evaluation parameter 

Despite being slightly lower than that of Decision 

Trees, the recall score of 90.11% nevertheless 

illustrates SVM's capacity to catch a sizable number of 

pertinent data points. This qualifies it for situations 

where cutting down on false negatives is important. 

The algorithm's overall efficiency in handling IoT data 

analytics tasks is demonstrated by the algorithm's F1-

Score of 91.84, which represents a balanced trade-off 

between precision and recall. SVM excels in 

differentiating between positive and negative 

occurrences with a ROC AUC score of 94.25, ensuring 

strong performance in scenarios where precise event 

detection and anomaly identification are crucial. In 

conclusion, the evaluation findings shown in Table 5 

highlight how well-suited Decision Trees and Support 

Vector Machines are for IoT data analytics within the 

Fog Computing Architecture. Decision trees are a 

dependable option for a variety of IoT applications due 

to their high accuracy, precision, recall, F1-Score, and 

ROC AUC. Support Vector Machines, on the other 

hand, exhibit excellent accuracy, robust precision, and 

a significant ROC AUC score, making them 

particularly useful in situations where event detection 

and precision are crucial. The exact requirements and 

intricacies of the IoT data analytics jobs within the Fog 

Computing Architecture would ultimately determine 

which of these algorithms would be used. 

 

Figure 8: Comparison of Evaluation parameter 

6. Research Challenges 

the creation and use of an IoT fog computing 

architecture How we process and analyse data from the 

Internet of Things (IoT) will be revolutionised by data 

analytics, a cutting-edge field of study. However, it has 

its share of difficulties and complications, just like any 

newly developing sector. We'll discuss some of the 
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major problems with this field's study in this 

paragraph. 

• IoT device heterogeneity: Handling the enormous 

variety of IoT devices is one of the main issues. 

These gadgets are available in a variety of forms, 

dimensions, and functions. Others are more 

potent gateways, while some are resource-

constrained sensors. It is quite difficult to create a 

Fog Computing Architecture that can handle this 

variability and utilise resources effectively. 

• Scalability and data management: The Internet of 

Things produces a lot of data. It is difficult to 

handle and manage this data effectively, 

especially in real-time or almost real-time 

circumstances. To handle the ever-growing IoT 

data flood, researchers must create scalable data 

storage and processing systems. 

• Resource Restrictions: The computational and 

storage capacities of many IoT devices are 

constrained. Fog computing tries to make use of 

these devices, however building algorithms that 

can effectively operate on limited hardware and 

optimising resource utilisation are on-going 

challenges. 

• Privacy: IoT devices frequently gather private and 

sensitive data. The security and privacy of this 

data must be ensured, especially when it is 

processed at the edge. To shield data and gadgets 

from a variety of dangers, researchers must create 

strong security measures. 

• Real-time processing and latency: By processing 

data closer to the source, fog computing seeks to 

reduce latency. A difficult research topic is still 

obtaining low-latency data analytics, particularly 

in mission-critical applications. 

• Interoperability: IoT ecosystems use a variety of 

communication standards and protocols. A 

challenging challenge that requires focus is 

ensuring interoperability and easy communication 

between devices and fog nodes. 

• Energy Efficiency: IoT gadgets frequently run on 

batteries. The energy used by these devices for 

performing complicated analyses might be 

quickly depleted. An on-going research problem 

is to position fog nodes and optimise algorithms 

to use as little energy as possible. 

• Resource allocation: Resource allocation and 

management across fog nodes, particularly in 

dynamic situations, is a challenging task. To 

ensure optimal use, researchers must create 

effective resource management algorithms. 

• Quality of Service (QoS): Depending on the task, 

multiple QoS criteria may apply in IoT 

applications. It can be difficult to ensure that fog 

computing systems can prioritise jobs according 

to their QoS needs. 

• Testing and Validation: It might be difficult to 

validate fog computing architectures for IoT data 

analytics in practical settings. For these systems 

to be reliable and robust, researchers must 

provide efficient testing and validation 

procedures. 

IoT data analytics can involve sensitive data, therefore 

addressing legal and ethical factors, such data privacy 

laws, is a crucial task. There are many different 

research problems involved in designing and 

implementing fog computing architectures for IoT data 

analytics. Collaboration between computer scientists, 

engineers, data scientists, and subject matter specialists 

is necessary to tackle these problems. Despite the 

complexity, overcoming these obstacles offers the 

promise of releasing IoT data analytics' full potential 

and opening the door to creative applications in a 

variety of industries, including healthcare, smart cities, 

agriculture, and industrial automation. 

7. Conclusion 

the creation and use of an IoT fog computing 

architecture Data analytics are a crucial first step in 

realising the Internet of Things' (IoT) boundless 

promise. At the network edge, more effective, 

responsive, and context-aware data analytics now have 

intriguing new opportunities thanks to this field of 

study. We have investigated several facets of this 

developing topic during this project, from the 

architectural foundation to the evaluation of machine 

learning algorithms. The design itself, which is 

distinguished by its closeness to IoT devices, provides 

a practical answer to the problems caused by latency, 

bandwidth restrictions, and data influx. Fog Computing 

Architecture enables IoT applications to give real-time 

or near-real-time insights by processing data at the 

edge, eliminating the need for centralised cloud 

processing and promoting quicker decision-making. 

Additionally, the use of machine learning methods like 

Support Vector Machines (SVM) and Decision Trees 

(DT) demonstrates how flexible and adaptable fog 

computing is for IoT data analytics. These algorithms 
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exhibit excellent performance across a range of 

evaluation measures, including recall, F1-Score, 

accuracy, and precision. This proves that using 

machine learning methods in fog computing to increase 

the intelligence of IoT systems is feasible. This voyage 

is not without its difficulties, though. Flexible designs 

and resource management techniques are required due 

to the wide variety of IoT devices, which range from 

powerful gateways to resource-constrained sensors. 

Additionally, continual research is necessary due to the 

continuing importance of data security, privacy, and 

scalability. For battery-powered IoT devices, real-time 

processing methods and energy-efficient algorithms are 

essential.  

8. Future Scope 

In the future, IoT fog computing Numerous industries, 

including smart cities, healthcare, agriculture, and 

industrial automation, can benefit greatly from data 

analytics. One cannot overestimate its potential to 

completely transform data processing and analytics at 

the network's edge. To meet the ever-changing 

demands of this dynamic and transformational subject, 

we must continue to develop, collaborate, and adjust 

our ways as we take on the research challenges that lie 

ahead. In essence, the Internet of Things has reached a 

turning point with the convergence of fog computing 

and IoT data analytics. It accelerates us towards a day 

where data-driven insights are ubiquitous and 

immediately available, allowing us to build IoT 

ecosystems that are smarter, more responsive, and 

more effective in order to tackle the complex problems 

that our interconnected world presents. Fog Computing 

Architecture for IoT Data Analytics is positioned to 

play a key role in defining this future with continuing 

research and innovation 
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