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Abstract 
Strong Intrusion Detection Systems (IDS) are now essential given how much more crucial services and 

communication are being reliant on digital networks. Through the use of machine learning classifiers on 

network traffic data, this research shows the deployment and thorough evaluation of IDS. The first step of the 

study is to gather and preprocess a wide dataset of network traffic, which includes both legitimate and criminal 

operations. A high-dimensional feature set is produced when important information is extracted from the raw 

data using feature engineering techniques. In order to simulate the patterns of network traffic, a variety of 

machine learning methods are used, such as Decision Trees, Random Forests, Support Vector Machines, and 

Neural Networks. The models are also put to the test in a variety of situations, such as those with changing 

levels of network traffic, different kinds of attacks, and false-positive rates. Results show that machine 

learning-based IDS is more accurate than conventional rule-based systems at identifying and categorising 

network intrusions. Assessments are made of the models' ability to scale up and change to accommodate new 

threats. A thorough examination of IDS utilising machine learning classifiers on actual network traffic data is 

provided in this research, which, in turn, advances network security. The results highlight the value of machine 

learning in improving the precision and sturdiness of intrusion detection systems and protecting crucial network 

infrastructures from new cyber threats. 
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1. Introduction 

The security of these networks has become an urgent 

concern as a result of the extensive usage of computer 

networks in our daily lives and the growing reliance on 

digital systems for crucial functions. The 

confidentiality, integrity, and accessibility of data and 

services are seriously threatened by cyberthreats, 

which can range from malware and viruses to 

sophisticated hacking attempts. By detecting and 

addressing these threats, intrusion detection systems 

(IDS) are essential to protecting networks [1]. The 

majority of conventional IDS solutions use rule-based 

methodologies, which compare predefined signatures 

or patterns against network data to identify anomalies. 

However, these strategies frequently fall behind the 

speed at which cyber dangers are developing. The [2] 

power of algorithms is used by machine learning-based 

IDS to analyse enormous amounts of network traffic 

data, identify typical patterns of behaviour, and spot 

variations that might be signs of intrusions or 

abnormalities. This paradigm shift has the potential to 

improve intrusion detection systems' precision and 

agility, improving their capacity to recognise both 

known and unidentified threats. This study explores 
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"Implementation and Evaluation of Intrusion Detection 

Systems using Machine Learning Classifiers on 

Network Traffic Data," with the goal of advancing 

network security [3]. 

 

Figure 1: Overview of Intrusion Detection System 

The quantity [4] and complexity of network traffic 

have exponentially increased as a result of the spread 

of digital networks. As businesses, people, and other 

entities increasingly rely on the internet for vital 

services like communication and trade, hostile actors 

now have a larger potential attack surface. Network 

security is a high issue since the effects of successful 

cyberattacks can range from data breaches and 

financial losses to the interruption of essential services. 

Intrusion Detection Systems (IDS) were created to 

monitor network traffic for indications of unauthorised 

or malicious activity in order to combat these threats. 

Typical rule-based traditional IDS systems look for 

known threats using predetermined signatures or 

patterns. While these systems are capable of seeing 

known assaults, they frequently have trouble spotting 

new or zero-day threats. Additionally, [6] it might be 

labour-intensive to monitor and update these 

regulations to reflect changing threats. As a result, 

using machine learning (ML) methods to improve IDS 

capabilities is gaining popularity. 

• Motivation: 

A flexible and dynamic approach to intrusion detection 

is required given the quick growth of cyberthreats. By 

enabling IDS to learn from historical data and identify 

anomalies or intrusions that may not have been 

expressly established in rules, machine learning 

presents a possible route to achieving this adaptability. 

The models of ML-based IDS may be continuously 

improved, and they can adjust to new network 

conditions and attack methods. Additionally, it is now 

possible to build and assess ML-based IDS on a larger 

scale because to improvements in ML techniques and 

the accessibility of large-scale network traffic statistics. 

Utilising these developments, this study examines the 

effectiveness, precision, and scalability of ML-based 

IDS when used with actual network traffic data [7]. 

The implementation and assessment of intrusion 

detection systems utilising machine learning classifiers 

are the main topics of this study. The study uses a 

broad dataset of network traffic, which includes both 

legitimate and illicit activity. To predict network traffic 

patterns, a variety of machine learning methods [8], 

[11] will be used, including but not limited to Decision 

Trees, Random Forests, Support Vector Machines, and 

Neural Networks. The models will also be put through 

various difficulties and scenarios, such as varying 

network traffic volumes, the existence of various attack 

types, and the effect of false positive rates on intrusion 

detection. 

The following are the research's contributions: 

• To use network traffic data to create a variety 

of machine learning classifiers for intrusion 

detection. 

• To design features from the network traffic 

dataset and to preprocess them in order to 

speed up model training. 

• Analyse the accuracy, precision, recall, f1-

score, and performance of machine learning-

based ids. 

• To evaluate the models' robustness and 

adaptability to changes in false-positive rates, 

attack kinds, and network traffic volume. 
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• To provide knowledge about how well 

machine learning-based ids can improve 

network security. 

2. Review of Literature 

The [9] field of IDS-related studies has changed as a 

result of the development of network environments, 

attack vectors, and the use of machine learning 

techniques. This section examines important 

developments and trends in intrusion detection, with a 

special emphasis on how machine learning classifiers 

are combined with network traffic data. In the past, 

rule-based systems like Snort and Suricata, which 

compared network traffic patterns to known attack 

signatures, were a major part of intrusion detection. 

These [10], [3] systems were successful against known 

dangers, but they had trouble responding to fresh, 

unforeseen attacks. By automating the learning of 

typical network behaviour and spotting abnormalities 

even in the absence of predefined criteria, machine 

learning-based IDS marks a paradigm change. 

Convolutional and recurrent neural networks (CNNs) 

[12] and RNNs in particular have demonstrated 

extraordinary promise for capturing intricate patterns 

and sequences in network data. A critical step in 

getting network traffic data ready for machine learning 

is feature engineering. Numerous methods for 

extracting pertinent features, such as statistical 

measurements, frequency domain analysis, and time 

series analysis, have been studied. To further [13] 

characterise network traffic behaviour, flow-based 

metrics like packet size distributions and flow duration 

statistics have been widely used. For an accurate 

assessment of IDS, benchmark datasets must be readily 

available. To ensure accurate evaluations of model 

performance, researchers have used a variety of 

evaluation approaches, such as cross-validation, train-

test splits, and time-based validation [14]. The 

resilience of machine learning-based IDS has been 

enhanced by using ensemble learning techniques like 

bagging and boosting. Accurate identification can be 

improved by combining multiple classifiers or models 

that have been trained on various subsets of data. In 

order to adapt pre-trained models to new network 

settings, transfer learning approaches, which transfer 

knowledge from one IDS to another, have also become 

an emerging possibility. IDS systems based on 

machine learning frequently concentrate on anomaly 

detection rather than the signature-based detection used 

by classic IDS systems. Finding departures from 

established standards is the goal of anomaly detection, 

which makes it very useful for finding previously 

unidentified attacks. The use of signature-based 

detection is still beneficial for identifying well-known 

assault patterns [15]. 

For machine learning-based [16] IDS, there are various 

obstacles to overcome in the transition from research to 

real-world deployment. Critical factors to take into 

account include scalability, computational 

effectiveness, and adaptation to dynamic network 

situations. Additionally, academics and practitioners 

are still working to solve the problem of false 

positives, in which lawful network data is wrongly 

labelled as harmful. For IDS, the quick growth of 

cyberthreats poses new difficulties. Attacks that 

purposefully alter network traffic in order to avoid 

detection have grown in popularity. On-going research 

is being done to create reliable machine learning-based 

IDS that can withstand such attacks. Regulations 

requiring compliance in a variety of sectors, including 

as finance and healthcare, [17] compel the usage of 

IDS. The use of machine learning-based IDS to help 

organisations achieve these compliance requirements 

while boosting security has been studied in this area. 

The necessity to adapt to the constantly shifting 

cybersecurity scene has resulted in a considerable shift 

in intrusion detection towards machine learning-based 

systems. The focus of on-going research in this field is 

to increase detection precision, scalability, and 

resilience to changing threats. This project advances 

the state of the art in network security by developing 

and accessing machine learning-based IDS on actual 

network traffic data as part of an ongoing effort.

 

Table 1: Summary of related work in the field of IDS 

Algorithm Finding Parameters Used Advantages Applications 

Decision Trees 

[17] 

Effective in detecting 

known attacks with high 

precision 

Entropy-based 

features, Gini index 

Interpretable, suitable 

for feature selection 

Network security, 

Anomaly detection 

Random Forests Improved accuracy and Number of trees, Reduction of Cybersecurity, 
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[18] robustness due to 

ensemble learning 

feature selection 

criteria 

overfitting, handles 

high-dimensional data 

Network monitoring 

Support Vector 

Machines [19] 

Effective in separating 

normal and malicious 

traffic 

Kernel functions, 

regularization 

parameter 

High-dimensional data 

handling, robust against 

noise 

Intrusion detection, 

Network forensics 

Neural Networks 

[20] 

Captures complex 

patterns and sequences 

in network data 

Architecture, 

activation functions 

Deep learning 

capabilities, 

adaptability to evolving 

threats 

Real-time threat 

detection, Network 

security 

K-Means 

Clustering [21] 

Identifies anomalies by 

clustering network data 

Number of clusters, 

distance metric 

Unsupervised learning, 

anomaly detection 

Network traffic 

analysis, Threat 

detection 

Naive Bayes 

Classifier [22] 

Simple and efficient, 

suitable for real-time 

detection 

Conditional 

probabilities 

Low computational 

cost, quick training 

Email filtering, 

Network monitoring 

Hidden Markov 

Models [23] 

Models network traffic 

behavior as a sequence 

of states and transitions 

State transition 

probabilities, 

observation model 

Temporal modeling, 

suitable for time-series 

data 

Anomaly detection, 

Intrusion prevention 

AdaBoost [24] Improves detection by 

combining weak 

classifiers 

Number of weak 

learners, learning 

rate 

Enhanced detection 

accuracy, adaptability 

to varying data 

distributions 

Anomaly detection, 

Network security 

One-Class SVM 

[25] 

Focuses on learning the 

characteristics of 

normal traffic 

Regularization 

parameter, kernel 

function 

Effective for anomaly 

detection in highly 

imbalanced datasets 

Anomaly detection, 

Insider threat 

detection 

Convolutional 

Neural Networks 

[26] 

Learns spatial features 

in network traffic data 

Architecture, filter 

size 

High-dimensional data 

processing, feature 

learning 

Network intrusion 

detection, Image 

analysis 

Recurrent Neural 

Networks [27] 

Captures temporal 

dependencies in 

network data 

Architecture, 

recurrent layers 

Sequential data 

modeling, suitable for 

time-series data 

Network intrusion 

detection, Anomaly 

detection 

Bayesian 

Networks [28] 

Models network traffic 

as probabilistic 

graphical structures 

Conditional 

probability 

distributions 

Probabilistic reasoning, 

interpretable models 

Network traffic 

analysis, Intrusion 

detection 

Extreme Gradient 

Boosting [29] 

Optimizes decision trees 

in an ensemble 

Learning rate, 

maximum tree 

depth 

High predictive 

accuracy, efficient 

training and evaluation 

Anomaly detection, 

Threat intelligence 

Long Short-Term 

Memory [2] 

Effective in capturing 

long-range 

dependencies in 

sequences 

Architecture, 

number of LSTM 

layers 

Sequence modeling, 

suitable for variable-

length sequences 

Network anomaly 

detection, Threat 

detection 

Principal 

Component 

Analysis [12] 

Reduces dimensionality 

while preserving 

variance 

Number of 

components, 

variance threshold 

Feature reduction, noise 

reduction 

Dimensionality 

reduction, Anomaly 

detection 

Self-Organizing 

Maps [13] 

Visualizes network 

traffic data in low-

dimensional maps 

Grid size, learning 

rate 

Topological mapping, 

anomaly visualization 

Network 

visualization, 

Intrusion detection 

 

 



 
 

107 

Research Journal of Computer Systems and Engineering (RJCSE)  

Volume 4 Issue 2 (2023) | Pages:  103 – 116 | e-ISSN:2230-8571; p-ISSN: 2230-8563 

https://doi.org/10.52710/rjcse.81 

 

https://technicaljournals.org 

Table 2: Comparison of ML Model with Advantage and Disadvantages 

Machine Learning Model Advantages Disadvantages 

Decision Trees - Interpretability - Prone to overfitting 

- Feature selection - Limited expressive power 

Random Forests - Improved accuracy due to ensemble - Can be computationally expensive 

- Robust against overfitting - Lack of interpretability 

Support Vector Machines - Effective in high-dimensional spaces - Sensitive to choose of kernel 

- Robust against noise - Requires careful parameter tuning 

Neural Networks - Captures complex patterns and 

sequences 

- Requires large amounts of data 

- Adaptability to evolving threats - Computationally intensive 

K-Means Clustering - Unsupervised learning for anomaly 

detection 

- Difficulty in setting the number of 

clusters 

- Scalable to large datasets - Prone to clustering noise 

Naive Bayes Classifier - Simple and efficient - Assumes independence of features 

- Suitable for real-time detection - May not handle complex relationships 

well 

Hidden Markov Models - Temporal modeling - Requires prior knowledge of states 

- Suitable for time-series data - Complexity increases with sequence 

length 

AdaBoost - Enhanced detection accuracy - Sensitive to noisy data 

- Adaptability to varying data 

distributions 

- Can overfit if weak classifiers are 

complex 

One-Class SVM - Effective for highly imbalanced 

datasets 

- Requires careful selection of kernel 

- Anomaly detection in skewed data - Limited ability to model complex patterns 

Convolutional Neural 

Networks 

- High-dimensional data processing - Requires large labelled datasets 

- Feature learning - Computationally intensive 

Recurrent Neural Networks - Sequential data modeling - May suffer from vanishing/exploding 

gradients 

- Suitable for time-series data - Long training times 

Bayesian Networks - Probabilistic reasoning - Requires prior knowledge of network 

structure 

- Interpretable models - Complexity increases with network size 

Extreme Gradient Boosting - High predictive accuracy - Requires careful tuning of 

hyperparameters 

- Efficient training and evaluation - Potential for overfitting 

Long Short-Term Memory - Captures long-range dependencies - Requires large amounts of data 

- Suitable for variable-length sequences - Computationally intensive 

 

3. Dataset Used 

A popular and extensive network traffic dataset for 

research and assessment in the areas of network 

intrusion detection and cybersecurity is the UNSW-

NB15 dataset. The dataset was created using network 

traffic that was recorded in a safe setting. It includes 

both legitimate and criminal activity, such as different 

kinds of attacks and incursions.  
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Table 3: Different Dataset Comparison 

Types of 

Dataset 

Date of 

created 

Related to Area Diff Attack Catg No. of 

Features 

Records 

Count 

UNSW-NB15 2015 Network 

Traffic 

Controlled 

Environment 

Various, e.g., 

DoS, Probe, R2L 

45 2,540,044 

KDD Cup 

1999 

1999 Network 

Traffic 

Controlled 

Environment 

Multiple, e.g., 

DoS, U2R 

41 4,898,431 

NSL-KDD 2009 KDD Cup 

1999 

Controlled 

Environment 

Multiple, e.g., 

DoS, Probe 

42 125,973 

CICIDS2017 2017 Real 

Network 

Data 

Real Network Multiple, e.g., 

DoS, Brute-force 

79 2,288,201 

DARPA IDS 

1998 

1998 Network 

Traffic 

Controlled 

Environment 

Multiple, e.g., 

Probe, DoS 

42 5,924,800 

Kyoto2006+ 2006 Network 

Traffic 

Controlled 

Environment 

Multiple, e.g., 

DoS, Scan 

22 6,126,121 

 

4. Proposed Methodology 

The suggested technique consists of three main steps 

for the implementation and assessment of Intrusion 

Detection Systems (IDS) employing Machine Learning 

Classifiers on network traffic data. First, missing value 

handling, feature normalisation, and categorical 

variable encoding will be done on the dataset made up 

of network traffic data.  

 

Figure 2: Systematic View of Proposed system 

After that, training and testing sets will be created from 

the preprocessed data. Then, three Machine Learning 

classifiers will be used to create distinct IDS models: 

Decision Trees (DT), Naive Bayes (NB), and Support 

Vector Machines (SVM). The training dataset will be 

used to develop these models, and the testing dataset 

will be used to assess their performance using 

measures like accuracy, precision, recall, F1-score, and 

ROC-AUC. The selection of the best classifier for 

actual intrusion detection applications will be guided 

by the comparative analysis of the three classifiers, 

which will assist identify which one is most effective at 

spotting network intrusions. 
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1. Decision Tree: 

The data is recursively split into subsets in this 

mathematical model, which essentially creates a 

hierarchy of if-then-else rules, up until a halting 

requirement is satisfied. The resulting decision tree is 

an effective tool for network intrusion detection 

because it reveals the reasoning behind the 

classification choices, allowing security experts to 

comprehend and decipher the elements influencing 

network incursions. Additionally, decision trees are 

often used to measure the success of IDS, providing 

useful metrics like accuracy, precision, recall, and F1-

score that are critical for determining how well these 

systems protect network infrastructures from cyber 

threats. 

Step wise Algorithm: 

Step 1: Entropy Calculation 

In decision tree construction, we begin by calculating 

the entropy of the target variable (e.g., intrusion or 

non-intrusion) to measure the impurity or disorder of 

the data: 

H(S)  =  −p1 log2(p1)  

−  p2 log2(p2) − . . . − pk log2(pk) 

Step 2: Feature Selection 

Next, we evaluate each feature's ability to reduce 

entropy using metrics like Information Gain or Gini 

Impurity. For Information Gain, we calculate: 

𝐼𝐺(𝐷, 𝐴)  =  𝐻(𝐷)  −  ∑ 𝑣

∈ 𝑉𝑎𝑙𝑢𝑒𝑠(𝐴) (|𝐷𝑣|/|𝐷|)  ∗  𝐻(𝐷𝑣) 

Step 3: Recursive Splitting: 

To divide the dataset, we pick the feature with the 

biggest Information Gain (or lowest Gini Impurity). 

Based on feature values, this recursive procedure 

generates offspring nodes for each branch. At each 

node, the entropy computation and feature selection are 

repeated. 

Step 4: Stop Conditions 

Up until we encounter a stopping condition, which 

might be any of the following: 

• The same class encompasses all samples. 

• Reaching a predetermined maximum depth. 

• The dataset size drops below a predetermined 

threshold. 

• Splitting features are no longer available. 

2. Support Vector Machine: 

A significant machine learning model used in the 

development and assessment of Intrusion Detection 

Systems (IDS) on network traffic data is called Support 

Vector Machines (SVMs). SVMs are particularly good 

at distinguishing between legitimate network activity 

and potentially harmful or intrusive behaviours.  

Step wise Algorithm: 

Step 1: Data Representation: 

- Each data instance is denoted as a feature vector, xi, 

positioned in a high-dimensional feature space. The 

index i corresponds to a specific instance. Additionally, 

every instance is assigned a class label, yi, which can 

be either +1 (indicating intrusion) or -1 (representing 

non-intrusion). 

Step 2: Hyperplane Equation: 

- The fundamental goal of Support Vector Machines 

(SVMs) is to discover a hyperplane, which can be 

expressed as the equation:  

  𝑤 ⋅ 𝑥 +  𝑏 =  0 

 In this equation, w signifies the weight vector that 

determines the orientation of the hyperplane, while b 

denotes the bias term. 

Step 3: Margin Maximization: 

- SVMs are designed to maximize the margin, which 

measures the distance between the hyperplane and the 

nearest data points belonging to each class. The margin 

is inversely proportional to the magnitude of the 

weight vector, ‖w‖. This optimization problem can be 

formulated as follows: 

  𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 1/2 ‖𝑤‖^2 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 +  𝑏)  

≥  1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑖. 

Step 4: Kernel Trick: 

• SVMs are capable of handling nonlinearly 

separable data through the utilization of kernel 

functions.  

• The kernel function K(xi, xj) computes the 

inner product between two feature vectors in a 

higher-dimensional space without explicitly 

transforming the data. Common kernel 

functions include linear, polynomial, radial 

basis function (RBF), and sigmoid kernels. 
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Step 5: Optimization: 

- Typically, the optimization problem is solved using 

techniques like quadratic programming to determine 

the optimal values for w and b, which define the 

hyperplane. 

Step 6: Classification: 

- For classifying new instances, SVM employs a 

decision function: 

  𝑓(𝑥)  =  𝑠𝑖𝑔𝑛(𝑤 ⋅ 𝑥 +  𝑏) 

If f(x) yields a positive value, the instance is classified 

as an intrusion; otherwise, it is classified as non-

intrusion. 

The result of the decision function is f(x). 

• w stands for the weight vector produced by 

the SVM training procedure. 

• x is the new instance's feature vector, which 

you want to classify. 

The bias term, b, was established by SVM training. 

The sign function, denoted by "sign(z)," is a 

mathematical operation that yields a result of +1 if the 

input value z is positive, -1 if it is negative, and 0 if it 

is exactly zero. With regard to SVM classification: 

𝑆𝑖𝑔𝑛(𝑓(𝑥))  =  +1 𝑖𝑓 𝑓(𝑥)  >  0. 

As a result, instance x is regarded as an intrusion. 

𝑆𝑖𝑔𝑛(𝑓(𝑥)) 𝑒𝑞𝑢𝑎𝑙𝑠 − 1 𝑖𝑓 𝑓(𝑥) 0. 

Accordingly, case X is categorised as a non-intrusion 

(normal). 

You determine the categorization based on the 

direction of the output of the decision function, f(x): 

• The newly discovered instance x is 

categorised as an intrusion if f(x) is positive 

(sign(f(x)) = +1). 

• The newly discovered instance x is 

categorised as a non-intrusion (normal) if f(x) 

is negative (sign(f(x)) = -1). 

- Interpreting the Decision: The decision 

function, which is computed by the SVM, 

effectively counts the distance between the 

feature vector x and the decision border 

(hyperplane). When x is entered into the 

decision function and is on one side of the 

hyperplane, it will produce a positive or 

negative result, indicating the classification of 

x. 

- Margin Consideration: When using SVM, 

instances close to the decision boundary 

(inside the margin) may have decision values 

that are almost zero, increasing the ambiguity 

of the classification result. Cases outside the 

margin lead to more certain classification 

choices. 

Step 7: Evaluation:  

Various metrics, including accuracy, precision, recall, 

F1-score, and the Receiver Operating Characteristic 

(ROC) curve, are used to assess the performance of the 

SVM model in the context of IDS. These metrics aid in 

evaluating the SVM-based IDS's efficiency in reliably 

identifying intrusions and reducing false alarms. 
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Figure 3: Flowchart of proposed IDS Method 

3. Naïve Bayes: 

Each network connection in the context of IDS is 

represented as a feature vector, and Naive Bayes makes 

use of probabilistic concepts to determine the 

probability of witnessing a given feature given the 

class labels of intrusion or non-intrusion. Despite its 

"naive" feature independence assumption, Naive Bayes 

frequently outperforms other approaches for IDS tasks 

in practise, especially when working with huge 

datasets. To determine whether network traffic is 

indicative of an intrusion or not, it estimates prior 

probabilities and conditional probabilities from training 

data. Naive Bayes is a useful technique for defending 

network systems against security threats and breaches 

because of its ease of use, quickness, and efficacy in 

spotting anomalies. 

Step wise Algorithm: 

1. Data Representation: 

- Each instance in network traffic data is represented as 

a feature vector X = {x₁, x₂, ..., xₙ}, with each xᵢ 

representing a feature like IP addresses, port numbers, 

or protocol types related to network connections. 

2. Class Labels: 

- Network traffic instances are categorized into two 

classes: "Intrusion" (C = 1) and "Non-Intrusion" (C = 

0). 
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3. Prior Probabilities: 

- P(C=1) and P(C=0) denote the prior probabilities of 

instances being classified as "Intrusion" or "Non-

Intrusion." These probabilities are estimated from 

training data. 

4. Conditional Probabilities: 

- Conditional probabilities, P(xᵢ|C=1) and P(xᵢ|C=0), 

express the likelihood of observing a specific feature xᵢ 

given the class label "Intrusion" or "Non-Intrusion." 

They are estimated from training data, assuming 

feature independence. 

5. Posterior Probabilities: 

- The Naive Bayes algorithm calculates posterior 

probabilities P(C=1|X) and P(C=0|X) for an instance X 

using Bayes' Theorem. The formula includes a 

normalization constant, P(X): 

𝑃(𝐶 = 1|𝑋)  =  (𝑃(𝐶 = 1)  ∗  𝑃(𝑥₁|𝐶 = 1)  ∗  𝑃(𝑥₂|𝐶

= 1)  ∗ . . .∗  𝑃(𝑥ₙ|𝐶 = 1)) / 𝑃(𝑋) 

𝑃(𝐶 = 0|𝑋)  =  (𝑃(𝐶 = 0)  ∗  𝑃(𝑥₁|𝐶 = 0)  ∗  𝑃(𝑥₂|𝐶

= 0)  ∗ . . .∗  𝑃(𝑥ₙ|𝐶 = 0)) / 𝑃(𝑋) 

6. Classification Decision: 

- Instances are assigned to the class with the higher 

posterior probability: 

  𝐼𝑓 𝑃(𝐶 = 1|𝑋)  >  𝑃(𝐶

= 0|𝑋), 𝑖𝑡′𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 "𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛" (𝐶 =  1). 

  𝐼𝑓 𝑃(𝐶 = 0|𝑋)  >  𝑃(𝐶

= 1|𝑋), 𝑖𝑡′𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 "𝑁𝑜𝑛

− 𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛" (𝐶 =  0). 

7. Smoothing: 

- Laplace smoothing, like add-one smoothing, is 

applied to prevent zero probabilities when a feature-

value combination is absent in the training data. 

8. Model Training: 

- During training, the algorithm estimates prior 

probabilities (P(C=1) and P(C=0)) and conditional 

probabilities (P(xᵢ|C=1) and P(xᵢ|C=0)) for each feature 

xᵢ using labeled training data. 

9. Performance Evaluation: 

- The Naive Bayes algorithm's effectiveness is assessed 

using performance metrics like accuracy, precision, 

recall, F1-score, and ROC curves to gauge its 

capability to classify network traffic instances as 

intrusions or non-intrusions. 

5. Result and Discussion 

IDS capabilities have been improved by the use of 

machine learning (ML) models, which promise to be 

more accurate and flexible in spotting network 

intrusions. Rigid evaluation is necessary to determine 

the effectiveness of IDS implementations, and this is 

frequently done by analysing numerous evaluation 

parameters as shown in table 4. One important 

indicator, accuracy, gives a general assessment of how 

successfully an IDS categorises network data. The 

SVM model has the highest accuracy in our evaluation 

(97%), which means that it properly recognises 97% of 

all network traffic cases. As a result, it appears that 

SVM excels in accurately classifying data. 

 

Table 4: Evaluation parameter result using ML Model 

Evaluation Parameter SVM DT NB 

Model Accuracy 0.97 0.95 0.91 

Model Precision 0.91 0.87 0.95 

Recall (Sensitivity) 0.93 0.89 0.82 

F1-Score 0.92 0.88 0.81 

Specificity 0.95 0.92 0.89 

AUC (Area Under the ROC) 0.96 0.91 0.97 

 

Precision is the proportion of accurate positive 

forecasts to all of the positive predictions the IDS 

made. When an intrusion is alerted by the IDS, high 

precision means that the alarm is very likely to be 

accurate.  
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Figure 4: Representation of Evaluation Parameter of 

ML Model 

With a precision of 95%, the NB model is the most 

accurate, demonstrating its capacity to reduce false 

alarms while maintaining a high detection rate. Recall, 

also referred to as sensitivity, measures how well an 

IDS can identify intrusions. It measures the proportion 

of accurate positive forecasts to all actual positive data 

points. Here, SVM has the highest recall rate (93%), 

showing that it is capable of accurately identifying a 

sizable percentage of actual incursions. The F1-Score, 

which provides a balanced assessment of the 

classifier's performance, is the harmonic mean of 

precision and recall. Both false positives and false 

negatives are taken into account. Each of the three 

models has an F1 score that is competitive, with SVM 

and DT scoring 92% and 88%, respectively.  

 

Figure 5: Comparison of Evaluation Parameters (SVM 

vs. DT vs. NB) 

This implies a decent compromise between recall and 

precision. Specificity measures how well a classifier 

can distinguish between non-intrusions, also known as 

true negatives. A low percentage of false positives is 

indicated by a high specificity score. SVM does 

exceptionally well at correctly identifying typical 

network traffic, with a specificity of 95%. The IDS's 

overall performance is evaluated by calculating the 

AUC (Area Under the ROC)'s capacity to distinguish 

between intrusion and non-intrusion cases. SVM's 

AUC of 0.96 indicates that it has strong discriminatory 

power and can successfully distinguish intrusions from 

legitimate traffic. The evaluation outcomes of our IDS 

utilising SVM, DT, and NB models offer insightful 

information about their individual strengths and flaws. 

SVM is a viable option for intrusion detection because 

of its exceptional accuracy, recall, and specificity.  

 

Figure 6: Accuracy comparison of ML Model 

Contrarily, NB performs exceptionally well in terms of 

precision and AUC, demonstrating its capacity to 

reduce false alarms and accurately distinguish between 

intrusions and non-intrusions. DT is competitive, but 

lags a little in some categories. It is important to 

remember that the best ML model for IDS depends on 

certain network parameters, the type of threats, and the 

desired precision/recall trade-offs. Making wise 

judgements to increase the security of network 

environments is made easier with the help of the 

thorough study of these evaluation parameters. 
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Table 5: Related Parameters for Evaluation of ML Method 

Evaluation Parameter SVM DT NB 

False Positive Rate (FPR) 0.03 0.06 0.09 

False Negative Rate (FNR) 0.05 0.09 0.19 

True Positive Rate (TPR) 0.93 0.89 0.79 

True Negative Rate (TNR) 0.95 0.92 0.89 

Detection Rate 0.93 0.89 0.79 

False Positive Rate (FPR) 0.03 0.06 0.09 

False Negative Rate (FNR) 0.05 0.09 0.19 

False Alarm Rate (FAR) 0.07 0.1 0.11 

Matthews Correlation Coeff. 0.89 0.84 0.74 

 

The proportion of non-intrusive events that are 

mistakenly categorised as intrusions is shown by the 

false positive rate (FPR), also known as the Type I 

error rate. Lower FPR levels are preferred since they 

indicate fewer false alarms, which means fewer 

notifications to network administrators that are not 

essential. SVM achieves the lowest FPR of the models 

with a value of 0.03, demonstrating its ability to 

successfully reduce false positives. False Negative 

Rate (FNR), also known as the Type II error rate, is a 

measurement of the percentage of real incursions that 

are mistakenly categorised as non-intrusions. A lower 

FNR is desired since it suggests a higher rate of true 

intrusion detection. The FNR values for SVM and DT 

are here noticeably lower than those for NB, with SVM 

having the lowest FNR at 0.05. 

 

Figure 7: Confusion Metrics Representation 

The efficacy of the model in identifying intrusions is 

shown by a higher TPR. SVM takes the lead with the 

greatest TPR of 0.93, indicating that it does 

exceptionally well at accurately recognising a sizable 

portion of genuine intrusions. The percentage of non-

intrusive occurrences that are accurately categorised as 

non-intrusions is known as the True Negative Rate 

(TNR), also known as specificity. Higher TNR values 

show the model's accuracy in identifying typical 

network traffic. The TNR values for all models, 

including SVM, DT, and NB, are competitive, with 

SVM getting the highest value at 0.95. 

 

Figure 7: Evaluation parameter for IDS using different 

ML Methods 

TPR and Detection Rate are interchangeable terms that 

highlight the model's ability to detect genuine 

incursions. SVM achieves the highest Detection Rate 

of 0.93 in this situation, demonstrating its great ability 

in identifying actual incursions. The False Alarm Rate 

(FAR) measures how frequently the IDS generates 

false alarms. FAR levels that are lower are preferable 

because they show fewer false alarms. With a FAR of 
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0.07, SVM does well in this aspect. The total 

classification performance can be assessed using the 

Matthews Correlation Coefficient, a statistic that 

balances the contributions of true positives, true 

negatives, false positives, and false negatives.  

6. Conclusion 

The study examined a wide range of evaluation criteria 

in order to highlight the advantages and disadvantages 

of each model. SVM stood out as a high performer 

since it excelled in so many different contexts. A high 

True Positive Rate (TPR) and Detection Rate were also 

shown by SVM, highlighting its ability to detect real 

intrusions. With a remarkable True Negative Rate 

(TNR) and Matthews Correlation Coefficient, DT 

demonstrated competitive performance. Although it 

showed somewhat higher FPR and FNR than SVM, 

this suggests there is still opportunity for development 

in reducing false positives and false negatives. Even 

though it was beneficial in certain ways, NB struggled 

to reduce FPR and FNR, which led to a greater False 

Alarm Rate (FAR) and a lower Matthews Correlation 

Coefficient. This indicates that NB might need more 

improvement to satisfy strict intrusion detection needs. 

Specific network characteristics, security goals, and 

trade-offs between false alarm and intrusion detection 

rates should be taken into account while selecting the 

best ML model. The outstanding performance of SVM 

highlights its potential as reliable IDS in network 

security applications. SVM is a promising ML model 

for network intrusion detection, and this paper shows 

the significance of rigorous assessment criteria in 

evaluating IDS performance. In the ever-changing 

network security environment, future research may 

concentrate on optimising model parameters and 

investigating ensemble methods to further improve 

IDS accuracy and reliability. 
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