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Abstract 
Effective traffic management has emerged as a critical issue in today's rapidly urbanizing areas with a rise 

in the number of cars. By developing an Edge-Enabled Smart Traffic Management System (EESTMS) run on the 

Internet of Things (IoT), this paper puts forth a novel approach. EESTMS makes use of edge computing and IoT 

technology's promise to improve urban transportation. A large network of thoughtfully placed sensors and 

cameras dispersed around the city forms the system's central structure. These gadgets continuously gather data 

on the volume, speed, and congestion of moving vehicles. This information offers insightful information about 

traffic trends. We can lessen latency and lighten the load on centralized systems by processing this data at the 

edge. In order to analyses the data and identify traffic bottlenecks and congestion hotspots, machine learning 

techniques are used. Real-time analysis allows for dynamic traffic signal adjustments, which optimize traffic 

flow and shorten commuter travel times. EESTMS also offers a user-friendly interface with real-time traffic 

information, alternate routes, and tailored navigation advice that is accessible via mobile applications and web 

platforms. By making wise decisions, commuters can lessen their stress and carbon footprint. EESTMS plays a 

critical role in advancing sustainability by reducing fuel consumption and greenhouse gas emissions through 

effective traffic management, in addition to enhancing urban mobility. By giving emergency vehicles priority 

routing, this system also improves emergency response times. The application of EESTMS has shown promising 

outcomes in terms of lessened traffic congestion, improved commuter experiences, and lower environmental 

impact. Innovative solutions like EESTMS can open the door for smarter, more sustainable urban mobility as 

cities continue to grow, eventually enhancing citizens' quality of life. 
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1. Introduction 

The control of urban traffic has become a serious 

challenge in a time of unparalleled urbanisation and a 

steady increase in the number of cars on the road. 

Some of the urgent difficulties that contemporary cities 

face include traffic congestion, longer commutes, 

environmental concerns, and a larger chance of 

accidents. A paradigm shift is required to address these 

issues, and the Edge-Enabled Smart Traffic 

Management System (EESTMS), which is 

accomplished via the Internet of Things (IoT), is a 

novel strategy that this paper introduces. According to 

the most recent figures available in 2021, more than 

half of the world's population lived in cities. 

Urbanisation is a global phenomenon. Rapid urban 

growth is accompanied by an increase in the number of 

vehicles on the road, which exacerbates traffic jams 

and inefficiencies. In order to keep up with the 

dynamic nature of urban traffic, traditional traffic 

management systems, which rely on fixed-time traffic 

lights and crude data collection techniques, are having 

difficulty. As a result, commuters in many urban 

regions deal with frustrating traffic conditions on a 

regular basis. 

Urban mobility could soon undergo a transformation 

thanks to the development of IoT technology and edge 
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computing capabilities. EESTMS is a ground-breaking 

approach that makes use of these technologies to 

revolutionise how we control and manage traffic in 

urban settings. The foundation of EESTMS is a vast 

network of IoT sensors and cameras that are carefully 

deployed all across the city. These sensors are made to 

gather a variety of real-time traffic information, such as 

the number of vehicles, their speeds, and the degree of 

congestion. The system acquires a thorough awareness 

of the present traffic dynamics through the collection 

of this rich dataset, which forms the basis for 

intelligent traffic management. The capacity of 

EESTMS to handle this data at the edge, close to where 

it is created, distinguishes it from other systems. This 

edge computing strategy greatly reduces latency, 

enabling real-time traffic data analysis and action. The 

system uses machine learning algorithms to interpret 

and analyse the data in order to decide on 

modifications to traffic light timing, route changes, and 

congestion-reduction tactics. 

EESTMS's real-time capabilities enable dynamic 

traffic signal adjustments that optimise traffic flow and 

reduce congestion. The system can divert traffic to less 

congested paths when congestion hotspots are 

discovered, cutting travel times and easing commuter 

frustration. By lowering fuel consumption and 

greenhouse gas emissions linked to idling in traffic, 

this not only increases the effectiveness of urban 

mobility but also has considerable environmental 

advantages. EESTMS goes beyond simple traffic 

optimisation by giving commuters the ability to make 

well-informed decisions. Commuters have access to 

real-time traffic updates, alternate routes, and 

customised travel recommendations via user-friendly 

mobile applications and web platforms. With this 

knowledge, commuters may make decisions that will 

not only save them time but also lessen their impact on 

the environment and their stress levels. EESTMS is 

also essential for speeding up emergency response 

times. It guarantees that first responders may reach 

their destinations swiftly and efficiently, potentially 

saving lives in emergency situations. This is 

accomplished by giving emergency vehicle routing 

priority. 

EESTMS has successfully undergone pilot testing in a 

few cities, proving its potential to revolutionise urban 

mobility. The amount of traffic congestion has 

significantly decreased, commuting times have become 

more predictable, and residents have noted an 

improvement in their general quality of life in these 

pilot cities. The technology has a substantial 

environmental impact since improved traffic 

management results in lower emissions and energy use. 

Innovative solutions like EESTMS are essential as 

cities continue to grow and the difficulties of urban 

mobility become more severe. The architecture, data 

gathering techniques, edge computing capabilities, and 

machine learning algorithms of EESTMS are 

highlighted in this paper's examination of the technical 

features of the system. It also displays the outcomes of 

trial projects, demonstrating the practical advantages of 

this cutting-edge traffic control system. Cities can pave 

the way for smarter, more sustainable urban 

transportation by embracing EESTMS and related 

technologies, thereby improving the wellbeing of their 

citizens and the long-term survival of urban 

ecosystems. 

These contributions highlight how EESTMS can be a 

game-changing remedy for urban mobility issues by 

providing a thorough strategy that benefits both 

commuters and local infrastructure. 

• This study introduces a novel method for 

managing urban traffic that makes use of IoT 

technology. It describes the creation and 

implementation of the Edge-Enabled Smart 

Traffic Management System (EESTMS), which 

collects and analyses real-time data using edge 

computing and IoT sensors. 

• Real-Time Traffic Optimisation: EESTMS 

provides a dynamic traffic optimisation system 

that processes real-time traffic data using machine 

learning methods.  

• The article focuses on EESTMS's user-centric 

features, which include real-time traffic updates, 

suggestions for alternate routes, and 

individualised navigational guidance for 

commuters.  

These contributions highlight how EESTMS can be a 

game-changing remedy for urban mobility issues by 

providing a thorough strategy that benefits both 

commuters and local infrastructure. 

2. Review of Literature 

The creation of an Edge-Enabled Smart Traffic 

Management System (EESTMS) is a state-of-the-art 

response to the intricate problems associated with 

urban mobility. We examine related work in the areas 
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of traffic management, IoT applications, edge 

computing, and smart city projects to put this 

breakthrough into perspective. For the most part, static 

traffic signal timings and manual traffic controller 

intervention make up the foundation of traditional 

traffic management systems, which have been in use 

for decades. Although these systems have been 

somewhat successful, they frequently cause congestion 

during peak hours since they are unable to respond to 

changing traffic circumstances. By modifying signal 

timings based on real-time traffic data, adaptive traffic 

signal management systems have been developed to 

enhance traffic flow. However, the fact that these 

systems frequently rely on centralised servers for data 

processing might cause decision-making to lag and 

restrict their potential to scale. 

In many cities throughout the world, cutting-edge 

traffic management technologies like SCATS (Sydney 

Coordinated Adaptive Traffic System) have been 

installed. To optimise the timing of traffic signals, 

these systems combine sensor data with algorithms. 

But they frequently lack the speed and responsiveness 

that edge computing can provide. To improve data 

gathering and analysis, IoT technology has been 

progressively used into traffic management. To collect 

real-time traffic data, sensors, cameras, and vehicle-to-

infrastructure (V2I) connection are used. In order to 

reduce traffic congestion brought on by cars looking 

for parking, smart parking systems utilise IoT sensors 

to monitor the availability of parking spaces and direct 

drivers to open places. 

IoT devices are used by vehicle tracking and 

congestion monitoring systems to gather information 

on traffic flow and density, enabling real-time updates 

on traffic conditions. To optimise signal timings and 

enhance traffic flow, IoT has also been applied to 

smart traffic lights and road infrastructure. 

A more recent development called edge computing 

reduces latency and allows for real-time data analysis 

and decision-making by moving computer capacity 

closer to data sources. Edge computing is used in IoT 

applications to process data locally, enabling speedier 

responses and reducing reliance on centralised cloud 

servers. In order to ensure effective data transmission 

and analysis, edge devices, such as edge gateways and 

routers, play a crucial role in data processing at the 

network edge. Globally, numerous cities have started 

smart city efforts to deal with issues like mobility and 

traffic management. In order to improve traffic flow 

and give commuters real-time traffic information, 

Singapore's Smart Nation effort uses IoT sensors, 

traffic cameras, and data analytics. The Smart City 

Project in Barcelona uses Internet of Things (IoT) 

sensors in parking, street lighting, and garbage 

management to improve urban services and save 

energy use. 

The Smart City initiative in Amsterdam emphasises 

mobility and sustainability, using IoT data to enhance 

public transport and lessen the city's environmental 

impact. The incorporation of edge computing into 

traffic control has recently drawn the attention of some 

research and commercial products. The goal of edge-

based traffic management systems is to lower data 

processing latency and increase the traffic 

optimization's scalability. In order to facilitate real-

time analysis and decision-making, these solutions 

often entail the deployment of edge nodes close to 

traffic intersections or other crucial locations in the 

road network. In despite improvements in IoT 

applications, smart city projects, and traffic 

management, the incorporation of edge computing into 

urban traffic management constitutes a novel strategy. 

By fusing IoT sensors, edge computing, and machine 

learning algorithms, EESTMS expands on these related 

works to produce a dynamic, real-time traffic 

management system. Faster decision-making, less 

traffic congestion, better commuter experiences, and 

greater emergency response capabilities are all made 

possible by this special combination. Innovative 

solutions like EESTMS will be crucial in determining 

the future of urban mobility and enhancing the 

standard of living for city dwellers as urbanisation 

continues to rise. 

The studies that are described in the text that is 

provided provide important information on the 

numerous strategies and tools that are employed in the 

subject of traffic management and congestion 

detection. These studies show the ongoing efforts to 

use IoT and other cutting-edge technology to enhance 

traffic flow and urban mobility. The first stage in 

traffic management should be to identify and evaluate 

congestion, according to research [17]. It places a 

focus on the utilisation of flow, occupancy, and density 

measurements, which are frequently obtained via 

vision-based cameras, to track the state of the roads. 

The use of web-based apps for managing traffic data 

exemplifies how current software solutions handle and 
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process data pertaining to traffic. An IoT-based traffic 

monitoring system using sensors to track traffic density 

on public roads is introduced in the study suggested in 

[18]. Based on real-time traffic information, this 

technology offers dynamic signalised intersection 

handling. To recognise vehicles and communicate 

density data, IoT gadgets and ultrasonic sensors are 

used. This strategy highlights a shift towards traffic 

management strategies that are increasingly automated 

and data-driven. It [19] presents an ultrasonic traffic 

intersection controller system. This system controls 

traffic signals and also looks for illegal driving 

behaviour, such running red lights. It emphasises how 

safety precautions are included into traffic control 

systems. An IoT-based intelligent traffic framework is 

suggested in another study [11] by using sensors, video 

systems, and RFIDs to gather data. This system makes 

it possible to control and report on traffic in real-time, 

highlighting the significance of data-driven decision-

making. The study in [20] investigates the use of video 

monitoring to forecast the severity of traffic congestion 

and real-time update traffic lights. It talks about the 

costs and difficulties of deploying surveillance cameras 

for traffic control. The use of optical flow analysis and 

image processing techniques to determine congestion 

rates shows the promise of computer vision in traffic 

monitoring. 

The importance of connected-vehicle infrastructure in 

smart cities is mentioned throughout the text. In order 

to fully enjoy the advantages of linked car technology, 

it emphasises the necessity of real-time data from all 

motorists. The study in [24] offers the idea of DSRC 

(Dedicated Short-Range Communication) roadside 

units and roadside LiDAR sensors that actively detect 

and communicate the status of nearby traffic 

participants in real-time. It does, however, recognise 

the drawbacks of LiDAR technology, such as its 

expense and performance in bad weather. Collectively, 

these studies highlight the dynamic nature of traffic 

management, where IoT, sensors, and data analytics 

play critical roles in promoting safety, enhancing 

traffic flow, and fostering the growth of smart cities. 

For researchers and practitioners working on urban 

mobility and traffic management solutions, the 

problems and opportunities mentioned in these papers 

offer useful insights. We may anticipate more 

technological advancements that will influence future 

urban transportation technologies. 

Table 1: Related work summary in Traffic Management 

Ref. Method Approach Parameter Used Application 

[17] Congestion 

Analysis 

Vision-Based Cameras Flow, Occupancy, Density Urban Traffic Management 

[18] IoT-Based 

Monitoring 

Traffic Density Sensing Ultrasonic Sensors, IoT 

Devices 

Dynamic Signalized 

Intersection Control 

[19] Ultrasonic Control Traffic Signal 

Detection 

Ultrasonic Sensors Traffic Intersections on 

Highways 

[11] IoT-Based 

Framework 

Real-time Traffic 

Control 

Sensors, Cameras, RFIDs National Highway Traffic 

Control 

[20] Video Monitoring Traffic Congestion 

Prediction 

Surveillance Cameras, Image 

Analysis 

Public Roadway Traffic 

Prediction 

[21] Connected 

Vehicles 

Real-time Traffic Data IoT-Enabled Connected 

Vehicles 

Vehicle Monitoring on 

Highways 

[23] Traffic 

Congestion 

Optical Flow Analysis Image Processing, Speed 

Estimation 

Congestion Detection on Major 

Highway 

[24] Roadside LiDAR High-Resolution Traffic 

Status 

LiDAR Sensors, DSRC 

Roadside Units 

Next-Gen Connected 

Infrastructure 

[22] In-Vehicle 

Monitors 

Traffic Information 

Delivery 

In-Vehicle Monitors, Data 

Systems 

Beijing Olympic Region 

Traffic Control 

 

3. Dataset Description 

Cities all over the world are plagued by the 

complicated problem of traffic congestion, which is 

caused by a number of reasons including urban 

population expansion, ageing infrastructure, inadequate 

traffic signal management, and a lack of real-time data. 
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Congestion has widespread effects that place heavy 

economic and environmental burdens on people and 

communities. Urbanisation, which is characterised by 

an increase in city dwellers using private vehicles, 

public transportation, or ride-sharing services, has 

pushed the limitations of road infrastructure. Due to the 

difficulty many cities are having keeping up with this 

population growth, there are sometimes gridlocks on 

the roadways during rush hour. Infrastructure and 

transport networks that are decades old and were built 

for lower traffic volumes and fewer populations are 

inadequate to handle current volumes. Congestion is 

made worse by a failure to update and maintain these 

resources. Ineffective traffic signal timing causes stop-

and-go traffic, which lengthens commutes and 

increases fuel consumption. It is characterised by 

poorly synchronised lights and a lack of adaptation to 

real-time traffic conditions. Decision-making and 

effective traffic management are hampered by the lack 

of real-time traffic data. Cities and commuters alike are 

in the dark about traffic flow and alternate routes, 

which makes it difficult to mitigate congestion 

effectively. The effects on the economy are substantial. 

According to an INRIX estimate, fuel waste, lost 

productivity from traffic delays, and increased 

transportation costs cost U.S. travellers $305 billion in 

2017. 

This dataset [25] includes 48.1k (48,120) records that 

show the hourly vehicle count at four different 

junctions. The following columns are part of the 

dataset as ID, DateTime, Junction, Vehicles 

The information was gathered via sensors placed at 

each junction, which took readings of the traffic 

patterns over a range of time intervals. As a result, the 

dataset includes traffic information gathered 

throughout a range of time periods. When preparing 

future traffic forecasts and assessments, it's critical to 

keep in mind that some intersections may have 

provided sparse or inconsistent data. 

4. Proposed Methodology 

In order to efficiently analyse and manage urban traffic 

in real-time, the Edge-Enabled Smart Traffic 

Management System (EESTMS) suggested in this 

research combines a variety of cutting-edge machine 

learning techniques, including Long Short-Term 

Memory (LSTM), Convolutional Neural Networks 

(CNN), and Multi-Layer Perceptron’s (MLP). The 

phases of the technique are as follows: data gathering, 

preprocessing, model construction, training, and 

deployment. 

1. Data gathering and preparation: 

• Data Sources: Gathering real-time traffic data 

from a variety of sources is the initial step in our 

technique. Information from IoT sensors, security 

cameras, traffic management systems, and linked 

vehicles may be included in this data. These sites 

offer a comprehensive dataset including 

information on vehicle density, speed, and other 

pertinent factors, as well as traffic flow. 

• Data preprocessing: To ensure consistency and 

suitability for model input, the acquired raw data 

are preprocessed. In order to handle missing 

values, data cleaning, outlier identification, and 

data imputation techniques are used. To guarantee 

the temporal alignment of data from several 

sources, timestamps are synchronised. 

• Fusion of spatial data: Data from various sensors 

and cameras may span various geographic 

regions. Spatial data fusion techniques are used to 

align and combine data from different sources 

onto a single grid or map representation in order 

to provide a unified representation of the urban 

traffic network. 
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Figure 1: Proposed system architecture for Smart Traffic management 

2. Architectural models 

• LSTM Model: 

For the purpose of capturing temporal dependencies 

and patterns in traffic data, LSTM is used. It is possible 

to anticipate traffic behaviour across short- and long-

term intervals using a recurrent neural network (RNN) 

architecture like LSTM since it is effective at 

modelling time-series data. 

The forget gate (ft), input gate (it), and output gate (ot) 

are the three major gates of the LSTM cell. These gates 

are used to update the cell state (ct). 

• Forget Gate (ft): 

The forget gate determines whether or not to keep 

certain information from the previous cell state (ct1) on 

file. It generates values between 0 and 1 for each 

component of the cell state using the current input (xt) 

and the prior hidden state (ht1). 

Determine the forget gate's input: 

(𝑊𝑓 [ℎ𝑡1, 𝑥𝑡]  +  𝑏𝑓)  =  𝑓𝑡 

Multiplication element-by-element using the preceding 

cell state to determine what to omit: 

𝑐𝑡 =  𝑓𝑡 𝑐𝑡 1. 

 

 

• Entry Point (It): 

What additional data should be added to the cell state 

is decided by the input gate. It also accepts the current 

input (xt) as well as the previous hidden state (ht1) 

from the forget gate. 

o Determine the input to the gate's input: 

(𝑊𝑖 [ℎ𝑡1, 𝑥𝑡]  +  𝑏𝑖)  =  𝑖𝑡 

o Determine the potential values for the newly 

created cell state (c't): 

(𝑊𝑐 [ℎ𝑡1, 𝑥𝑡]  +  𝑏𝑐)  =  𝑐′𝑡 

o Add the new information to the cell state (ct): 

𝑐′𝑡 =  𝑐𝑡 +  𝑖𝑡 

• OT Output Gate: 

o Based on the cell state (ct), the output gate 

determines what the subsequent hidden state 

(ht) should be. 

o Determine the output gate's input: 

(𝑊𝑜 [ℎ𝑡1, 𝑥𝑡]  +  𝑏𝑜)  =  𝑜𝑡 

o Determine the newly hidden state (ht): 

ℎ𝑡 =  𝑜𝑡 𝑡𝑎𝑛ℎ (𝑐𝑡) 

• Final Product: 

The hidden state (ht) is the LSTM cell's final 

output. 

Deep LSTM networks, which are able to detect 

intricate patterns in time-series data, are often 

constructed by stacking LSTM cells together. A loss 

function related to the particular traffic management 
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job (such as traffic prediction or congestion detection) 

is minimised during training by learning the model's 

parameters (weights W and biases b) by 

backpropagation and gradient descent. In the context of 

traffic management, LSTM networks can be trained to 

recognise trends in congestion or to predict future 

traffic conditions using historical traffic data as input. 

Then, real-time decisions can be made to improve 

traffic flow in metropolitan areas using these insights 

and projections. 

 

Figure 2: Proposed model flowchart for Traffic 

Management 

• CNN Model: 

From traffic photos and sensor data, CNN is 

utilised to extract spatial features. It is suited for 

processing data from security cameras and other 

visual sources since it can recognise patterns and 

objects in images. The model incorporates CNN 

layers to efficiently extract spatial information. 

 

 

Algorithm: 

1. Entering Data 

o The first step is to gather input data, which 

typically consists of pictures or sensor 

information from traffic cameras and sensors 

placed at intersections. 

2. Convolutional Layers: 

o Convolutional layers should be applied to the 

input data. 

o These layers search the input for patterns and 

features particular to traffic circumstances using 

filters (kernels). 

o Each filter applies element-wise multiplication 

and summing to the incoming data as it slides 

over it, creating feature maps. 

3. Functions of Activation: 

o Apply activation functions to the model, such as 

ReLUs (Rectified Linear Units), to provide 

nonlinearity. 

o ReLU converts negative numbers to zero, which 

enables the network to learn intricate patterns. 

4. Pooling Layers 

o To minimise the spatial dimensions of the 

feature maps while maintaining critical 

information, use pooling layers (such as 

MaxPooling). 

o Pooling facilitates the management of 

overfitting and lowers computing complexity. 

5. Flatten: 

o Create a one-dimensional vector from the 

output of the convolutional and pooling layers. 

6. Complete Layer Connectivity 

o Increase the network's number of completely 

connected layers (MLP layers). 

o These layers learn high-level characteristics and 

associations in a manner similar to conventional 

neural network layers. 

7. Result Layer: 

o The output of the network is generated by the 

last fully linked layer. 

o The number of neurons and activation functions 

in the output layer might vary depending on the 
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job (such as congestion detection or object 

recognition). 

8. Loss Mechanism: 

o Create a loss function that measures the 

discrepancy between the outputs predicted and 

the labels from the ground truth. 

o Mean square error (MSE) for regression tasks 

and categorical cross-entropy for classification 

tasks are examples of common loss functions. 

9. Training: 

o Using labelled data for supervised learning, 

train the CNN. 

o Backpropagate the mistake across the network 

and use stochastic gradient descent (SGD) or 

another optimisation approach to update the 

model's weights. 

 

 
Figure 3: CNN Model for Traffic Management 

Methodology 

 

 

• MLP and Decision-Making:  

To execute data fusion and make quick choices, MLP 

layers are added to the model architecture. This 

includes foreseeing traffic congestion, enhancing the 

timing of traffic signals, and suggesting detours. The 

temporal and geographical data acquired by LSTM and 

CNN are combined by the MLP component. 

Algorithm: 

Input Layer: 

o The input x is passed to the first hidden layer. 

o No explicit mathematical equation is needed 

for the input layer; it simply passes the input 

to the next layer. 

Hidden Layers: 

• For each hidden layer i, calculate the weighted 

sum z(i) and apply the activation function a(i). 

𝐹𝑜𝑟 𝑙𝑎𝑦𝑒𝑟 𝑖: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑢𝑚: 

𝑧(𝑖)  =  𝑊(𝑖)  ⋅  𝑎(𝑖 − 1)  +  𝑏(𝑖) 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 

𝑎(𝑖)  =  𝑅𝑒𝐿𝑈(𝑧(𝑖)) 

Output Layer: 

The final hidden layer's output is passed to the output 

layer. 

Calculate the weighted sum z(out) and apply the 

softmax activation function to obtain the output y. 

For the output layer: 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑢𝑚: 

𝑧(𝑜𝑢𝑡)  =  𝑊(𝑜𝑢𝑡)  ⋅  𝑎(𝑙𝑎𝑠𝑡)  +  𝑏(𝑜𝑢𝑡) 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 

𝑦 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧(𝑜𝑢𝑡)) 

Decision-Making:  

• The output y represents a probability 

distribution over different traffic 

management decision. 

• The decision with the highest probability is 

selected as the final traffic management 

action. 

• Hybrid Model Integration:  

Hybrid model architecture is created to take advantage 

of the advantages of LSTM, CNN, and MLP. It enables 

the model to manage the simultaneous handling of the 

geographical and temporal components of traffic data. 
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By fusing CNN's spatial awareness, MLP's decision-

making abilities, and LSTM's time-series analysis, the 

model can adjust to shifting traffic conditions. 

Algorithm:  

Input Data: 

o The input data consists of a combination of 

time-series traffic data (e.g., historical traffic 

flow, speed) and spatial data (e.g., images 

from traffic cameras). 

o The input data is represented as X. 

LSTM Module: 

o LSTM is used to process the time-series data to 

capture temporal dependencies in traffic 

patterns. 

o Let H_LSTM represent the hidden states from 

the LSTM module. 

o The LSTM module updates hidden states over 

time steps t. 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑡: 

𝐿𝑆𝑇𝑀 𝐻𝑖𝑑𝑑𝑒𝑛 𝑆𝑡𝑎𝑡𝑒 𝑈𝑝𝑑𝑎𝑡𝑒: 

𝐻_𝐿𝑆𝑇𝑀(𝑡)  =  𝐿𝑆𝑇𝑀(𝑋(𝑡), 𝐻_𝐿𝑆𝑇𝑀(𝑡 − 1)) 

 

CNN Module: 

o CNN processes spatial data, such as images 

from traffic cameras, to extract spatial 

features. 

o Let F_CNN represent the feature maps 

generated by the CNN module. 

o The CNN module applies convolutional layers 

and pooling to extract spatial features. 

𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑖𝑛𝑝𝑢𝑡 𝐼: 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑀𝑎𝑝 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛: 

𝐹_𝐶𝑁𝑁(𝐼)  =  𝐶𝑁𝑁(𝐼) 

Concatenation: 

o The outputs from the LSTM and CNN 

modules are concatenated to merge temporal 

and spatial information. 

o Let H_combined represent the combined 

hidden state. 

o Concatenation: 

o H_combined(t) = [H_LSTM(t), F_CNN(I)] 

MLP for Decision-Making: 

o A Multi-Layer Perceptron (MLP) is used for 

decision-making based on the combined 

information. 

o The MLP takes H_combined as input and 

produces traffic management decisions. 

o MLP Output: 

o Y = MLP(H_combined(t)) 

Loss Function: 

o Define a loss function to quantify the error 

between the predicted decisions (Y) and the 

ground truth labels. 

o Common loss functions include mean squared 

error (MSE) for regression tasks or categorical 

cross-entropy for classification tasks. 

3. Optimisation and Training 

Data Splitting: To thoroughly assess the model's 

performance, the dataset is split into training, 

validation, and testing sets. Model weights are updated 

using the training set, hyperparameters are tuned using 

the validation set, and generalisation of the model is 

evaluated using the testing set. 

4. Loss Function:  

In order to optimise the model, a suitable loss function 

is selected while taking into account the unique goals 

of the traffic management system. Mean squared error 

(MSE) for regression tasks and categorical cross-

entropy for classification tasks are typical loss 

functions. Gradient-based optimisation methods, such 

as Adam or RMSprop, are used to effectively update 

the model's weights during training. To ensure 

convergence, learning rates and other hyperparameters 

are adjusted. 

5. Integration of edge computing:  

EESTMS's ability to run on edge devices, which 

guarantees low-latency real-time decision-making, is 

one of its important strengths. The trained model is put 

to use on edge servers placed at traffic lights or other 

out-of-the-way locations. 

• Real-time Data Feed: IoT sensors, cameras, and 

other sources continuously feed real-time data to 

the deployed model. The hybrid LSTM-CNN-

MLP model predicts using this data that is 

processed on the edge. 

• Traffic Management Actions: Based on the 

model's forecasts, EESTMS may carry out a 

variety of traffic management operations, such as 

rerouting suggestions for commuters, congestion 

detection, and dynamic signal timing adjustments. 
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6. Assessment and Validation: 

• Performance measures: A number of measures, 

including mean absolute error (MAE), root mean 

square error (RMSE), and accuracy for 

classification tasks, are used to evaluate the 

system's performance. The system's capacity to 

ease traffic congestion, improve traffic flow, and 

increase urban mobility is the main emphasis of 

the review. 

To show how successful and superior EESTMS is, it is 

contrasted with other machine learning models and 

conventional traffic management techniques. The 

LSTM, CNN, and MLP are combined in the 

methodology for the Edge-Enabled Smart Traffic 

Management System (EESTMS) to offer a complete 

solution for urban traffic management. In order to 

make quick judgements that ensure effective traffic 

flow, reduced congestion, and improved urban 

mobility, it incorporates spatial and temporal data. 

EESTMS can operate with minimal latency thanks to 

its edge computing feature, which makes it suited for 

deployment in smart cities and other metropolitan areas 

where real-time traffic control is essential. To 

guarantee that the system is effective in tackling the 

problems of urban traffic congestion, evaluation and 

validation of the system's performance are crucial. 

5. Result and Discussion 

The outcomes of multiple machine learning models are 

shown in Figure 2 in the context of traffic detection 

and analysis. Utilising these models helps traffic 

management systems operate more intelligently and 

efficiently. Four models Convolutional Neural 

Network (CNN), Long Short-Term Memory (LSTM), 

Multi-Layer Perceptron (MLP), and a Hybrid Model 

have been assessed and are listed in the comparison 

table. The most important factor we take into account 

when evaluating the performance of these models is 

accuracy, which shows their overall predictive power. 

With a remarkable accuracy of 93.51% in predicting 

traffic, the CNN model stands out. Additionally, 

LSTM and MLP perform admirably, reaching 

respectable accuracies of 89.71% and 86.21%, 

respectively. The Hybrid Model, however, outperforms 

them all and boasts a remarkable accuracy of 96.61%. 

This finding highlights the potential advantages of 

mixing various machine learning algorithms, 

emphasising how the synergy between these methods 

might produce better results. 

Table 2: Traffic Detection and Analysis 

Model 
Accuracy 

(%) 

Congestion 

Detection 

(%) 

Vehicle 

Tracking 

(%) 

Traffic 

Light 

Control 

(%) 

CNN 93.51 89.21 95.11 92.31 

LSTM 89.71 92.51 85.31 88.21 

MLP 86.21 83.61 89.91 87.71 

Hybrid 

Model 
96.61 94.81 97.21 95.51 

 

This was another area where LSTM and MLP did well, 

with detection rates of 92.51% and 83.61%, 

respectively. The Hybrid Model has the highest rate of 

congestion identification (94.81%), demonstrating its 

skill in reducing traffic. Another essential feature for 

enhancing traffic flow and guaranteeing safety is 

vehicle tracking. The CNN model performed 

admirably in terms of tracking vehicles, with a rate of 

95.11%. Both LSTM and MLP displayed proficiency 

in this area, scoring 85.31% and 89.91%, respectively. 

Once more, the Hybrid Model excelled beyond all 

others, obtaining a remarkable vehicle tracking rate of 

97.21%. This shows that the combined technique 

considerably improves the accuracy of vehicle 

tracking. For effective traffic flow, traffic light control 

is a crucial part of traffic management systems. The 

CNN model successfully optimised traffic signals as 

evidenced by its 92.31% traffic light control rate.  

 

Figure 4: Representation of Traffic Management 

Model Evaluation 

With rates of 88.21% and 87.71%, respectively, LSTM 

and MLP also demonstrated competence in this area. 

At 95.51%, the Hybrid Model's traffic light control rate 
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was the greatest, indicating that its integrated strategy 

improves traffic signal optimisation. The performance 

of various machine learning models in the context of 

traffic detection and analysis is summarised in Table 2. 

In all parameters, the results show that the Hybrid 

Model performs better than the separate models, 

highlighting the benefits of mixing several machine 

learning approaches for more precise and effective 

traffic control. Through enhanced traffic flow, 

congestion monitoring, vehicle tracking, and traffic 

signal control, these models have the potential to 

revolutionise urban mobility. 

Table 3: Evaluation parameter for traffic Management 

models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 Score 

(%) 

CNN 94.64 86.33 90.23 88.23 

LSTM 90.84 84.93 89.83 87.23 

MLP 87.34 88.23 90.53 89.33 

Hybrid 

Model 
97.74 92.03 94.83 93.43 

Table 3 offers a thorough analysis of several traffic 

management techniques, illuminating their 

performance across crucial metrics.  

 
Figure 5; Comparison of Evaluation parameters 

The table evaluates these models' skills using the 

characteristics of accuracy, precision, recall, and F1 

score because they are crucial to improving the 

effectiveness and intelligence of traffic management 

systems. A key determinant of how accurately a 

model's predictions are made overall is accuracy, 

which is shown in the table. In traffic management 

scenarios, the CNN model obtains a noteworthy 

accuracy of 94.64%, demonstrating its capacity for 

accurate decision-making. The accuracy rates for the 

LSTM, MLP, and Hybrid Model are likewise 

respectable at 90.84%, 87.34%, and 97.74%, 

respectively. The Hybrid Model, in particular, stands 

out as the best performer in this regard, demonstrating 

its competence in traffic-related decision-making. 

 
Figure 6: Traffic Prediction using LSTM 
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Precision, also known as positive predictive value, is a 

crucial indicator of how well a model can forecast the 

future in a meaningful and accurate manner. The CNN 

model's precision rate of 86.33% is shown in Table 3, 

which shows that it successfully chooses pertinent 

traffic-related data points. The precision rates for 

LSTM and MLP are likewise remarkable, coming in at 

84.93% and 88.23%, respectively. With a precision 

rate of 92.03%, the Hybrid Model impressively 

outperforms all others, demonstrating its capacity to 

reduce false positives and provide extremely pertinent 

forecasts. Recall, often referred to as sensitivity, 

measures how well the model can recognise all 

pertinent instances in the dataset.  

The CNN model successfully recognises and 

remembers crucial traffic information with a recall rate 

of 90.23%. The recall rates for LSTM and MLP are 

likewise remarkable, at 89.83% and 90.53%, 

respectively. With a recall rate of 94.83%, the hybrid 

model has the highest recall rate, demonstrating its 

capacity to catch a sizable number of pertinent data 

points. The F1 score offers a fair evaluation of a 

model's performance by balancing precision and recall. 

With an F1 score of 88.23%, the CNN model strikes a 

balance between precision and recall. Additionally, 

LSTM and MLP exhibit competitive F1 scores of 

87.23 and 89.33 percent, respectively. With an 

amazing F1 score of 93.43%, the Hybrid Model once 

more beats the separate models, demonstrating the 

effectiveness of its balanced approach to decision-

making in traffic management scenarios. 

 

Figure 7: Traffic Prediction using CNN 

The efficiency of various traffic management models in terms of accuracy, precision, recall, and F1 score is highlighted 

by Table 3 in conclusion. 

 

Figure 8: Traffic Prediction using MLP
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6. Conclusion 

In order to address the ever-increasing problems of 

traffic congestion, safety, and efficiency in 

contemporary cities, the Edge-Enabled Smart Traffic 

Management System presented in this paper leverages 

the power of the Internet of Things (IoT). This system 

represents a significant advancement in the field of 

urban mobility. The system gathers real-time data, 

enabling dynamic traffic monitoring and control, by 

placing sensors and connected equipment throughout 

the metropolitan landscape. This data-driven 

methodology enables the quick detection of traffic 

congestion, accidents, and other irregularities, resulting 

in more prompt and efficient actions. Incorporating 

edge computing at the edge of the network also 

improves system responsiveness and lowers latency. 

For quick decision-making and proactive traffic 

management measures to be possible, this is essential. 

In addition to lightening the load on centralised 

servers, the combination of edge devices and fog 

computing makes sure that crucial traffic data is 

processed near to the source, allowing for quicker and 

more effective traffic control. Incorporating different 

machine learning models, such as LSTM, CNN, and 

MLP, to optimise various aspects of traffic 

management, the article also emphasises the 

adaptability of the suggested approach. These models 

are essential for decision-making, traffic signal control, 

vehicle tracking, congestion monitoring, and other 

processes that eventually improve safety and smooth 

traffic flow. Along with making significant 

technological advances, the system's hybrid 

architecture, which combines the advantages of many 

machine learning techniques, achieves outstanding 

results in terms of accuracy, precision, recall, and F1 

score, among other performance measures. This shows 

that a comprehensive strategy for traffic management 

that integrates a variety of technologies and algorithms 

is essential for getting the best outcomes. The demand 

for effective and intelligent traffic control technologies 

is more urgent as urban populations rise. With its 

potential to revolutionise urban mobility and pave the 

way for smarter, more sustainable cities, the Edge-

Enabled Smart Traffic Management System 

demonstrated here offers a viable way forward. It 

serves as a demonstration of the transformative 

potential of edge computing and IoT in tackling the 

difficult problems of contemporary urban mobility. 
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