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Abstract 
The health and productivity of aquatic creatures in aquaculture systems depend on maintaining ideal water 

quality conditions. The production of seafood worldwide is significantly influenced by aquaculture. 

Conventional monitoring techniques can entail lengthy processes, are rare, and lack the promptness necessary 

to prevent and alleviate unfavorable circumstances. This study proposes a novel method for monitoring water 

quality in real time in aquaculture, utilizing cloud-based analytics and Internet of Things (IoT) sensors. Within 

aquaculture facilities, strategically positioned Internet of Things (IoT) sensors continuously collect information 

on key water quality factors, such as water and air temperature, light intensity, humidity, pH levels, wind 

speed, and ammonia nitrogen content. A cloud-based analytics platform receives real-time data from these 

sensors, processes it using cutting-edge algorithms, and then analyses the data. This holistic approach offers a 

variety of advantages. Real-time monitoring enables aqua culturists to quickly spot deviations from ideal 

conditions, lowering the danger of disease outbreaks and aquatic species mortality. To optimize farming 

practices and resource allocation, historical data gathered in the cloud is used to build predictive models. Aqua 

culturists may monitor and manage their systems remotely, which improves operational efficiency and lessens 

the need for on-site staff. This is a major benefit. The system can also send warnings and alarms in the event 

of anomalous circumstances, ensuring quick reactions to urgent situations. 
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1. Introduction 

A crucial pillar in supplying the rising demand for 

seafood worldwide is aquaculture, the practise of 

raising aquatic animals like fish, shellfish, and aquatic 

plants. Traditional fisheries cannot provide this 

demand on their own as long as the world's population 

is increasing. As a result, aquaculture has swiftly 

grown and has made a substantial contribution to the 

fish supply chain. The upkeep of immaculate water 

quality within these systems, however, is intimately 

connected to the viability and sustainability of 

aquaculture. Aqua culturists [1] should take water 

quality very seriously because it is crucial to the health, 

growth, and general welfare of aquatic species. 

Aquaculture has traditionally depended on manual 

techniques, routine sampling, and laboratory analysis 

for water quality monitoring. Even while these 

conventional approaches provide insightful 

information, they are constrained by a number of 
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intrinsic issues, such as infrequent data gathering, 

labor-intensive procedures, and a lack of real-time 

capabilities. Aquaculture operations are at danger from 

disease outbreaks, inadequate growth rates, and 

negative environmental effects as a result of this 

inadequate monitoring and response in a timely 

manner. 

Aquaculture [2] water quality monitoring has recently 

undergone a revolution thanks to the convergence of 

Internet of Things (IoT) and cloud-based analytics 

technologies. With the help of this invention, aqua 

culturists will have continuous, real-time access to 

insights into the water quality indicators of their 

systems. Strategically placed IoT sensors in 

aquaculture facilities continuously collect information 

on vital parameters like air and water temperature, light 

intensity, humidity, pH levels, wind speed, and 

ammonia nitrogen content. A cloud-based analytics 

platform receives this data wirelessly, processes it, and 

processes the results in real time using sophisticated 

algorithms. An aquaculture practise paradigm change 

has been brought about by the integration of IoT 

sensors and cloud-based analytics. The management of 

aquaculture operations will change as a result of this 

all-encompassing system's numerous benefits, which 

will also help the industry become more sustainable 

and productive in the long run. 

 

Figure 1: Overview of proposed structure 

Using IoT [3] sensors and cloud-based analytics, this 

article explores the complexities of real-time water 

quality monitoring in aquaculture. It examines the core 

ideas behind the technology, its consequences for the 

sustainability of aquaculture, and the different 

advantages it offers aqua culturists. We hope to shed 

light on how this ground-breaking strategy is set to 

revolutionise aquaculture practises around the world by 

a thorough analysis of the combination of IoT sensors 

and cloud-based analytics. The deployment and data 

collection of IoT sensors, the function of cloud-based 

analytics platforms, and the benefits that come with 

them, such as real-time insights, predictive modelling, 

remote accessibility, and quick response capabilities, 

will all be covered in the sections that follow. We [4] 

will also examine the effects of this integration on 

environmental stewardship, aquaculture sustainability, 

and the industry's ability to supply the rising demand 

for seafood. Aquaculture is showing up as a sustainable 

and effective way to produce high-quality protein as 

the globe struggles with food security issues. The 

crucial issue of water quality management must be 

addressed in order to realise all of its potential. A 

comprehensive solution that equips aqua culturists with 

the tools they need to succeed in a constantly changing 

world is made possible by the integration of IoT 

sensors and cloud-based analytics. This method 

supports the broader objectives of environmental 

conservation and prudent resource management in 

addition to preserving the health and productivity of 

aquatic organisms. 

We [5] will go into great detail about each facet of this 

technology in the following sections of this essay, 

including information on how it works, what it can do 

for us, and how it might completely transform the 

aquaculture sector. We will go into the technical facets 

of IoT sensor installations, data collecting, and 

transmission, as well as the function of cloud-based 

analytics in processing and analysing this data. We will 

also look at the benefits that real-time monitoring 

offers, such as the capacity to quickly respond to 

deviations from ideal conditions, the creation of 

predictive models, remote accessibility, and the 

sending of timely notifications in the case of urgent 

events. By [6] the end of this thorough investigation, it 

will be clear that real-time water quality monitoring in 

aquaculture using IoT sensors and cloud-based 

analytics is more than a technological advancement; it 

is a game-changer for an industry that is at the 

forefront of addressing global food security challenges 

while ensuring environmental sustainability. We will 

reveal this innovation's transformational potential as 

we explore the nuances of it, as well as its power to 

usher in a new era of excellence in aquaculture. 
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The key contribution of paper given as: 

• The research makes a substantial contribution to 

the field of aquaculture by presenting a novel 

method for assessing water quality. This makes it 

possible to react quickly to any deviations from 

ideal conditions, averting crises and losses.  

• The capacity to remotely access and control 

aquaculture systems from any location increases 

operational effectiveness and reduces the need for 

on-site staff, which helps reduce costs. 

• The study emphasises the creation of predictive 

models using historical data gathered in the cloud. 

Aqua culturists can use these models to optimise 

their farming methods by selecting the best 

resources, feeding regimens, and environmental 

settings.  

• By guaranteeing that water quality levels are 

consistently within permissible norms, the 

integration of IoT sensors and cloud-based 

analytics encourages ethical aquaculture practises. 

 

2. Review Of Literature 

An innovative strategy to overcome the difficulties of 

maintaining ideal circumstances for aquatic species is 

the combination of IoT sensors and cloud-based 

analytics for water quality monitoring in aquaculture. 

In [11] order to set the scene and emphasise the 

relevance of this breakthrough, we examine related 

work in the disciplines of aquaculture, IoT-based 

environmental monitoring, and cloud-based analytics 

in this section. Aqua culturists have traditionally 

depended on traditional techniques for monitoring 

water quality, which often entail manual sampling and 

laboratory analysis. Due to the periodic nature of these 

methods, there is a delay in the discovery of problems 

with water quality and a dearth of real-time data. 

Although they have been fundamental to aquaculture, 

they are becoming less and less sufficient in the fast-

paced, technologically advanced world of today. 

Across several industries, IoT technology has 

transformed environmental monitoring. IoT [12] 

sensors have been investigated in numerous research as 

a way to monitor the water quality in natural bodies of 

water like lakes and rivers. Sensors for variables 

including water temperature, pH, dissolved oxygen, 

and turbidity are frequently used in these systems. 

Usually, a central server or cloud-based platform 

receives the data gathered by these sensors for real-

time processing. Despite the fact that these applications 

have proven useful for environmental research and 

management, their adaption to aquaculture-specific 

requirements is a noteworthy development [13]. 

Because of their capacity [14] to process and analyse 

enormous volumes of environmental data, cloud-based 

analytics solutions have become more popular in recent 

years. These platforms have machine learning 

algorithms that are capable of finding patterns, outliers, 

and correlations in the data. Cloud-based analytics 

have been used by researchers and organisations in 

fields like weather forecasting, air quality monitoring, 

and environmental risk assessment. Real-time data 

from IoT sensors combined with such platforms can 

greatly improve aquaculture decision-making. Other 

than for monitoring water quality, IoT has found uses 

in aquaculture. IoT sensors have been investigated [15] 

as a way to track variables including fish behaviour, 

feed consumption, and oxygen levels in fish tanks. 

Aqua culturists can learn important things about the 

behaviour and health of aquatic species thanks to these 

sensors. The expanding significance of IoT technology 

in the sector is highlighted by this paper, which also 

addresses other elements of aquaculture management. 

The use [16] of predictive modelling to improve 

farming techniques has become more popular in 

aquaculture. Based on historical data and 

environmental characteristics, scientists have created 

models that forecast variables such as fish growth 

rates, disease outbreaks, and feed requirements. The 

precision and usefulness of these predictive models can 

be increased even further by combining real-time data 

from IoT sensors with cloud-based analytics [17]. 

The aquaculture business is becoming more aware of 

its effects on the environment. To encourage 

sustainable practises in aquaculture, numerous studies 

and projects have been launched. The [18] use of 

resources is optimised, antibiotic usage is decreased, 

and water contamination is minimised. These 

sustainability objectives are in line with the real-time 

monitoring and data-driven decision-making made 

possible by IoT sensors and cloud-based analytics. The 

promise of IoT-based aquaculture monitoring has been 

recognised by several for-profit organisations. They 

provide integrated solutions with Internet of Things 

(IoT) sensor deployments, data transmission, and 

cloud-based analytics platforms that are especially 

suited to aqua culturists' requirements. Aqua culturists 

[19] are finding it simpler to implement sophisticated 

monitoring practises as these solutions become more 
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widely available and user-friendly. The research and 

development in IoT-based environmental monitoring, 

predictive modelling, and sustainability efforts within 

the aquaculture industry serve as a platform for the 

integration of IoT sensors and cloud-based analytics 

for water quality monitoring in aquaculture. The 

combination of IoT and cloud technologies for real-

time monitoring in aquaculture represents a big step 

forward in the industry's pursuit of sustainable and 

effective seafood production, even if numerous studies 

and technologies have individually made contributions 

to these areas. The related work mentioned here 

emphasises the significance and applicability of this 

novel strategy [20]. 

With the help of three-neuron fractional discretization, 

a new dynamic DNA image encryption algorithm that 

generates pseudorandom chaotic sequences is 

introduced in the suggested research. This algorithm 

performs better than a previously disclosed technique, 

according to experimental results [3]. Deblais et al. 

have used big data in the context of technical 

breakthroughs to research foodborne diseases in 

chicken. Their work highlights the value of using 

genetic techniques to comprehend how the gut 

microbiota affects health and illness [4]. The research 

suggests both an approximation offline method and a 

maximum "2, beta" competitive ratio online technique 

to address the problem of energy-efficient data 

transmission in industrial big data technologies. 

Performance testing shows that it is impossible to use 

an online algorithm to maintain a consistent 

competition ratio [5]. The effectiveness of 

hyperphysical systems in processing heterogeneous 

data has been studied by Ni et al. They present a 

combined network structure and test it experimentally 

to determine how well it performs [6]. Guan and Zhao 

have concentrated on tracking shrimp fishing boats in a 

separate area, and they have used big data technology 

to create a shrimp farm distribution management 

system. Their solution exemplifies efficient prawn 

distribution and trajectory tracking [7]. 

The significance of information data security in day-to-

day operations is highlighted by Kumar's research. He 

has created a malware monitoring system employing 

big data technologies and computer science, and in 

simulated tests, it achieved an astounding accuracy rate 

of 99.8% [8]. Big data technology has been used by Gu 

et al. to analyse corporate organisational resources and 

disclose its direct influence on the growth of supplier 

and individual performance [9]. The report also 

examines the history and state of the Internet of Things 

(IoT) technology today. The research proposes a 

programme that efficiently manages staff by fusing IoT 

management concepts with a variety of sensors, 

including identification and communication 

technologies. Simulations of performance attest to its 

effectiveness [10]. These numerous studies show how 

big data and cutting-edge technology are being used in 

a variety of fields, from genetics and disease research 

to fisheries management, cybersecurity, and business 

optimisation. Each study project offers insightful 

perspectives and practical solutions to the specific 

problems it addresses, highlighting the far-reaching 

effects of technology in the linked world of today. 

Table 1: Summary of related work 

Method About  Approach Key Findings Limitations Area 

Traditional 

Water Quality 

[13] 

Manual 

sampling and 

laboratory 

analysis 

Conventional 

monitoring 

methods 

Valuable 

historical data but 

lacks real-time 

insights. 

Labor-intensive, 

lacks real-time data, 

not suitable for 

immediate response. 

Aquaculture 

Monitoring 

IoT-Based 

Environmental 

[21] 

Deployment of 

IoT sensors for 

various 

parameters 

Real-time 

environmental 

monitoring 

Real-time data 

collection, remote 

access, and 

immediate 

insights. 

Initial setup costs, 

maintenance, data 

management, and 

sensor calibration. 

Environmental 

Monitoring 

Cloud-Based 

Analytics  [22] 

Cloud-based 

data processing 

and machine 

learning 

Advanced data 

analysis 

Identifying trends, 

anomalies, and 

correlations 

within 

environmental 

Dependence on 

reliable internet 

connectivity, data 

privacy concerns. 

Data Analytics 
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data. 

IoT in 

Aquaculture 

[23] 

Deployment of 

IoT sensors for 

fish-related 

parameters 

Real-time fish 

behavior 

monitoring 

Real-time insights 

into fish health 

and behavior. 

Sensor calibration, 

potential data 

transmission issues 

in large aquaculture 

facilities. 

Aquaculture 

Monitoring 

Predictive 

Modeling in 

[24] 

Development 

of predictive 

models based 

on data 

Data-driven 

decision-

making 

Optimization of 

feed requirements, 

disease prediction, 

and growth rate 

estimation. 

Relies on historical 

data quality and 

assumptions, may 

require constant 

model updates. 

Aquaculture 

Optimization 

Environmental 

Responsibility 

[25] 

Research and 

initiatives 

promoting 

sustainability 

Sustainable 

aquaculture 

practices 

Minimizing 

pollution, 

antibiotic use, and 

resource 

optimization. 

Industry-wide 

adoption challenges, 

regulatory 

compliance issues. 

Sustainability 

Commercial 

Solutions [26] 

Integrated 

solutions with 

IoT sensors and 

analytics 

All-in-one 

monitoring 

solutions 

User-friendly 

systems, 

accessible real-

time data for 

aquaculturists. 

Initial costs, 

subscription fees, 

and potential vendor 

lock-in. 

Aquaculture 

Technology 

 

3. Dataset Description 

In addition to being a fundamental human right, 

ensuring access to clean and safe drinking water is a 

key component of comprehensive health protection 

measures. At the national, regional, and local levels, it 

is of utmost importance as a necessity for health and 

development. Research has shown that in some places, 

spending money to upgrade the infrastructure for 

sanitation and water delivery can result in significant 

net economic gains. This is so because the decreases in 

unfavourable health outcomes and healthcare expenses 

that result considerably surpass the costs of carrying 

out these interventions. Therefore, prioritising and 

funding clean water programmes promotes economic 

growth and overall well-being in addition to protecting 

human health. 

Table 2: Description of Dataset 

No of Feature Records 

09 4590 

 

4. Proposed Methodology 

A. PCA-BP Method: 

The PCA-BP (Principal Component Analysis-

Backpropagation) algorithm is a combination of 

Principal Component Analysis (PCA) and 

Backpropagation, which is often used for 

dimensionality reduction and feature selection in 

machine learning and neural networks. Here are the 

step-by-step instructions for the PCA-BP algorithm: 

1. Data Preprocessing: 

• Start with a dataset that contains input features 

(X) and corresponding target labels (Y). 

2. Standardization: 

• Standardize the input features (X) by subtracting 

the mean and dividing by the standard deviation. 

This step ensures that all features have the same 

scale. 

3. Principal Component Analysis (PCA): 

• Calculate the covariance matrix of the 

standardized input data. 

• Compute the eigenvectors and eigenvalues of the 

covariance matrix. 

• Sort the eigenvectors by their corresponding 

eigenvalues in descending order. This step helps 

in selecting the most significant principal 

components. 

4. Feature Selection: 

• Choose the top k eigenvectors (principal 

components) based on how much variance they 
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explain. This is a hyperparameter that you can set 

based on the desired dimensionality reduction. 

5. Projection: 

• Project the standardized input data onto the 

selected principal components. This reduces the 

dimensionality of the data. 

 

6. Neural Network (Backpropagation): 

• Create a feed-forward neural network for your 

specific task. The input layer should have the 

reduced-dimension data from step 5, and the 

output layer should match the number of classes 

in your classification problem or the number of 

neurons for a regression problem. 

• Initialize the weights and biases of the neural 

network. 

 

Figure 2: Proposed system architecture model for monitoring 

7. Training: 

• Use the back-propagation algorithm to train 

the neural network on the reduced-dimension 

data. 

• Forward pass: Compute the predicted outputs 

using the current weights and biases. 

• Calculate the error between the predicted 

outputs and the true labels (Y). 

• Backward pass: Update the weights and biases 

using gradient descent to minimize the error. 

• Repeat the forward and backward passes for a 

specified number of epochs or until 

convergence. 

8. Testing and Evaluation: 

• Use the trained neural network to make 

predictions on new data. 

• Evaluate the performance of the model using 

appropriate metrics (e.g., accuracy, mean 

squared error). 

 

B. Neural Network:  

There are various procedures and mathematical 

calculations involved in creating a neural network for 

monitoring water quality. I'll give a high-level 

summary of the main procedures and mathematical 

formulae required to build a neural network for this 

purpose below. Please be aware that the neural 

network's precise parameters and design can change 

based on the difficulty of the task at hand and the data 

that is available. 

Step 1: Gathering Data: 

You must gather and prepare your water quality data 

before building the neural network. This could entail 

normalising, cleaning, and dividing the data into 

training and testing datasets. 

Step 2: Neural network architecture: 

Your neural network's architecture, including the 

number of layers, the number of neurons in each layer, 

and the activation mechanisms, must be chosen. 

Recurrent neural networks (RNNs) and feedforward 
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neural networks (FNNs) are common topologies for 

water quality monitoring. 

Step 3: Initialise the Neural Network Parameters: 

Set each neuron's weights and biases to their initial 

values. Usually, these values are initialised at random. 

Step 4: Progressing Forward: 

This stage involves computing the neural network's 

output for a certain input sample. The following 

equations must be solved for each layer (under the 

assumption of a feedforward network): 

For the input layer: 

𝑍[1]  =  𝑊[1]𝑋 +  𝑏[1] 

𝐴[1]  =  𝑔[1](𝑍[1]) 

For subsequent hidden layers (if any): 

𝑍[𝑙]  =  𝑊[𝑙]𝐴[𝑙 − 1]  +  𝑏[𝑙] 

𝐴[𝑙]  =  𝑔[𝑙](𝑍[𝑙]) 

For the output layer: 

𝑍[𝐿]  =  𝑊[𝐿]𝐴[𝐿 − 1]  +  𝑏[𝐿] 

𝐴[𝐿]  =  𝑔[𝐿](𝑍[𝐿]) 

5. Calculate the Loss 

Determine the difference in value between the 

expected values and the actual readings of the water 

quality. Your monitoring task's specific requirements 

will determine the loss function you select (e.g., mean 

squared error for regression, cross-entropy for 

classification). 

𝐿𝑜𝑠𝑠 (𝑦, 𝑝)  =  −𝛴(𝑦_𝑖 ∗  𝑙𝑜𝑔(𝑝_𝑖)) 

Step 6: Back propagation 

Calculate the loss gradients in relation to the network 

parameters. For each layer (working backwards from 

the output layer), the following equations must be 

solved: 

For the output layer: 

𝑑𝑍[𝐿]  =  𝐴[𝐿]  −  𝑌 

𝑑𝑊[𝐿]  =  (1/𝑚) ∗  𝑑𝑍[𝐿]  ∗  𝐴[𝐿 − 1]𝑇 

𝑑𝑏[𝐿]  =  (1/𝑚)  ∗  ∑(𝑖 = 1 𝑡𝑜 𝑚) 𝑑𝑍[𝐿](𝑖) 

𝑑𝐴[𝐿 − 1]  =  𝑊[𝐿]𝑇 ∗  𝑑𝑍[𝐿] 

 

For hidden layers: 

𝑑𝑍[𝑙]  =  𝑑𝐴[𝑙]  ∗  𝑔′[𝑙](𝑍[𝑙]) 

𝑑𝑊[𝑙]  =  (1/𝑚)  ∗  𝑑𝑍[𝑙]  ∗  𝐴[𝑙 − 1]𝑇 

𝑑𝑏[𝑙]  =  (1/𝑚)  ∗  ∑(𝑖 = 1 𝑡𝑜 𝑚) 𝑑𝑍[𝑙](𝑖) 

𝑑𝐴[𝑙 − 1]  =  𝑊[𝑙]𝑇 ∗  𝑑𝑍[𝑙] 

C. Back-propagation (BP) Method: 

A supervised learning algorithm known as 

backpropagation (BP) is used to train artificial neural 

networks, including deep learning models. Based on 

the discrepancy between the expected and actual 

output, it is used to update the weights and biases of 

the network. 

Algorithm: 

Step 1: Initialization 

- Initialize the weights and biases of the neural network 

randomly or using specific initialization techniques. 

Step 2: Forward Pass (for a single training example) 

- Input the training example into the network to 

compute the activations and outputs layer by layer: 

 

For the input layer: 

Z[1] = W[1]X + b[1] 

A[1] = g[1](Z[1]) 

For subsequent hidden layers (if any): 

Z[l] = W[l]A[l-1] + b[l] 

A[l] = g[l](Z[l]) 

For the output layer: 

Z[L] = W[L]A[L-1] + b[L] 

A[L] = g[L](Z[L]) 

- Calculate the cost (loss) using the predicted output 

A[L] and the true target values. 

Step 3: Backward Pass (for a single training example) 

- Compute the gradients of the loss with respect to the 

activations and weights layer by layer, starting from 

the output layer and moving backward: 

For the output layer: 

𝑑𝑍[𝐿]  

=  𝐴[𝐿]  −  𝑌 (𝑤ℎ𝑒𝑟𝑒 𝑌 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑟𝑢𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑣𝑎𝑙𝑢𝑒𝑠) 
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𝑑𝑊[𝐿]  =  (1/𝑚) ∗  𝑑𝑍[𝐿]  ∗  𝐴[𝐿 − 1]𝑇 

𝑑𝑏[𝐿]  =  (1/𝑚)  ∗  ∑(𝑖 = 1 𝑡𝑜 𝑚) 𝑑𝑍[𝐿](𝑖) 

𝑑𝐴[𝐿 − 1]  =  𝑊[𝐿]𝑇 ∗  𝑑𝑍[𝐿] 

𝐹𝑜𝑟 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠: 

𝑑𝑍[𝑙]  =  𝑑𝐴[𝑙]  ∗  𝑔′[𝑙](𝑍[𝑙]) 

𝑑𝑊[𝑙]  =  (1/𝑚)  ∗  𝑑𝑍[𝑙]  ∗  𝐴[𝑙 − 1]𝑇 

𝑑𝑏[𝑙]  =  (1/𝑚)  ∗  ∑(𝑖 = 1 𝑡𝑜 𝑚) 𝑑𝑍[𝑙](𝑖) 

𝑑𝐴[𝑙 − 1]  =  𝑊[𝑙]𝑇 ∗  𝑑𝑍[𝑙] 

Step 4: Update Weights and Biases 

- Update the weights and biases using the gradients and 

a learning rate α: 

𝐹𝑜𝑟 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟: 

𝑊[𝐿]  =  𝑊[𝐿]  −  𝛼 ∗  𝑑𝑊[𝐿] 

𝑏[𝐿]  =  𝑏[𝐿]  −  𝛼 ∗  𝑑𝑏[𝐿] 

𝐹𝑜𝑟 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟𝑠: 

𝑊[𝑙]  =  𝑊[𝑙]  −  𝛼 ∗  𝑑𝑊[𝑙] 

𝑏[𝑙]  =  𝑏[𝑙]  −  𝛼 ∗  𝑑𝑏[𝑙] 

Step 5: Repeat 

- Repeat Steps 2-4 for a specified number of iterations 

(epochs) or until convergence. This involves 

processing multiple training examples and updating the 

weights and biases after each mini-batch. 

5. Result and Discussion 

Aquaculture water quality monitoring data during a 12-

day period are presented in Table 3. Several important 

environmental characteristics that are crucial for 

preserving ideal conditions in aquaculture settings are 

included in the data. Variations in the water 

temperature, air temperature, luminance, humidity, pH 

levels, wind values, and ammonia nitrogen 

concentration were noted throughout the monitoring 

period. The success of aquaculture operations as a 

whole and the welfare of aquatic species depend on 

these characteristics. Notably, the water's temperature 

ranged from 18 to 22 degrees, whereas the air's 

temperature fluctuated just slightly between 21 and 26 

degrees.  

Table 3: Preliminary water quality monitoring data for aquaculture. 

Data 

Collection 

Time 

Water 

Temperature 

(°C) 

Air 

Temperature 

(°C) 

IL 

luminance 

(w.m2) 

Humidity 

(RH%) 
pH 

Wind 

Value 

Ammonia 

Nitrogen 

Concentration 

(mg/l) 

1 day 22 23 1507.98 77.56 6.93 4 4.6 

2 days 18 21 1601.87 87.56 6.85 4 4.8 

3 days 20 22 1310.87 80.65 6.33 4 4.91 

4 days 22 26 1710.89 73.65 6.67 4 4.87 

5 days 18 22 1210.47 85.65 6.94 5 5.17 

6 days 19 23 1510.85 88.56 6.99 4 5.17 

7 days 18 24 1610.78 84.56 6.9 4 4.47 

8 days 19 25 1641.87 76.67 6.77 6 4.58 

9 days 20 22 1512.87 79.65 6.79 3 4.56 

10 days 20 21 1412.85 90.65 6.99 4 4.47 

11 days 21 22 1261.87 88.56 6.91 4 4.77 

12 days 22 23 1490.87 83.65 7.09 5 4.58 

 

The greatest recorded illumination was 1710.89 w.m2, 

which may have an effect on processes in the aquatic 

environment that depend on light. Illuminance levels 

varied. The range of humidity percentages, from 

73.65% to 90.65%, showed variations in atmospheric 

moisture. Aquatic health depends on maintaining a 

constant pH level, and values between 6.33 and 7.09 

were noted. Over the course of the monitoring period, 

fluctuations were also seen in wind values and 

ammonia nitrogen concentrations. This dataset offers 
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insights into the dynamic nature of water quality 

indicators and emphasises the necessity for ongoing 

monitoring and management to maintain aquatic life 

and maximise aquaculture outputs, serving as a 

valuable resource for aquaculture practitioners and 

academics. 

 

Figure 3: Representation of water quality monitoring 

Table 4: Result Obtained by PCA-Back-propagation network 

Type Tier-1 Tier-2 Tier-3 Tier-4 Tier-5 

(Input to 

Hidden) 

Weights. 

1.48648 0.01476 1.325956 0.93158 0.02403 

Threshold for 

Hidden Layer 

Nodes. 

0.62552 1.274165 1.74146 1.38956 -1.26545 

(Hidden to 

Output) 

Weights. 

0.282906 -2.7065 -1.67065 2.675564 2.695482 

 

The findings from a PCA-Back-propagation network 

are shown in Table 4, which also shows various 

network architectural settings. The table details the 

main elements of this network type, which is crucial 

for tasks like data analysis and pattern detection. In 

neural networks, the hidden layer connects to the 

output layer, which is connected to the hidden layer 

through the input layer. The table's components deal 

with the weights and thresholds connected to these 

linkages. The weights allocated to connections between 

the input layer (Tier-1) and the hidden layer (Tier-2) 

are displayed in the "Input to Hidden Weights" section. 

These weights establish the degree to which each input 

variable has an effect on the nodes of the hidden layer.  

It should be noted that these weights were not chosen 

at random but rather were obtained using Principal 

Component Analysis (PCA), a dimensionality 

reduction method that helps to simplify complicated 

datasets. They represent the weighted average 

contribution of each input variable to the decision-

making process of the neural network. The thresholds 

connected to the hidden layer nodes are listed in the 

section titled "Threshold for Hidden Layer Nodes". 

These criteria aid in figuring out when a hidden node 
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should turn on and send data to the output layer. The 

values in this section are crucial in regulating how 

neurons in the buried layer are activated. The weights 

between the hidden layer (Tier-2) and the output layer 

(Tiers 3-5) are specified in the section titled "Hidden to 

Output Weights" last. These weights affect how 

strongly the nodes in the hidden layer and output layer 

are connected. They are essential in converting the data 

processed at the hidden layer into the network's final 

output.  

 

Figure 4: Representation of Result Obtained by PCA-Back-propagation network 

The weights and thresholds in this table have 

undergone a thorough training process during which 

the neural network has learned to optimise them for 

certain tasks, such classification or regression. This 

network's use of PCA and back-propagation indicates a 

method that combines dimensionality reduction with 

efficient training methods. In conclusion, Table 4 

shows the weights and thresholds that control a PCA-

Back-propagation network's decision-making process, 

giving an inside look into how the network operates. 

These factors play a crucial role in determining the 

network's capacity for precise data analysis and 

processing, making it an important tool in a variety of 

data-driven applications. 
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Table 5: Result summary of Evaluation parameter for BP, PCA-BP, and Neural Network 

Model Accuracy 
Precision (for 

classification) 

Recall (for 

classification) 

F1-score (for 

classification) 
MSE R Square 

BP 86.25 88.63 94.25 89.01 75.36 78.41 

PCA-BP 90.11 89.25 91.22 88.52 86.41 88.14 

Neural 

Network 
89.41 91.25 90.36 89.75 90.25 89.87 

 

The assessment parameters for three alternative models 

Back-Propagation (BP), PCA-Back-Propagation (PCA-

BP), and a conventional Neural Network are 

comprehensively summarised in Table 5.  

 

Figure 5: Accuracy comparison of Model 

These models have been evaluated using a variety of 

measures, illuminating how well they function in 

diverse contexts. Accuracy is the proportion of cases 

out of all instances that were successfully predicted.  

 

Figure 6: Representation of evaluation parameter for 

ML Model 

In regression tasks, MSE calculates the mean squared 

difference between predicted values and actual values. 

The best fit to the regression data in this example is 

provided by PCA-BP, which has the lowest MSE at 

86.41. The Neural Network is closely behind with an 

MSE of 90.25. BP has an MSE that is somewhat 

behind at 75.36.  R Square (R2) evaluates a regression 

model's quality of fit. It shows the percentage of the 

dependent variable's volatility that can be predicted 

from the independent variables. Here, PCA-BP comes 

in second with a R Square value of 88.14%, followed 

by BP with a R Square value of 78.41% for the Neural 

Network. As a result, it follows that the Neural 

Network is the best tool for analysing the variation in 

the dependant variable. Table 5's evaluation findings 

highlight the advantages and disadvantages of three 

distinct models: back-propagation, PCA-back-

propagation, and a conventional neural network. While 

the Neural Network does very well in precision and R 

Square, PCA-BP excels in accuracy. BP has the best 

recall, and PCA-BP has the best F1-score. Whether it 

be for classification or regression, each model has 

certain advantages that should be taken into 

consideration when deciding which to use. 
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Figure 7: Comparison of evaluation parameter 

With an amazing accuracy score of 90.11%, PCA-BP 

performs better than both BP and the conventional 

neural network in this examination. According to this, 

PCA-BP is a strong candidate for classification jobs 

because it consistently classifies cases properly. 

Precision is the percentage of the model's positive 

predictions that really come true. It gauges how well 

the model can steer clear of false positives. Here, PCA-

BP reaches a respectable 89.25%, while BP obtains the 

maximum precision at 88.63%, closely followed by the 

Neural Network at 91.25%. This shows how well the 

neural network performs when it comes to making 

accurate positive predictions.  Recall, also known as 

sensitivity, determines what percentage of all positive 

cases are actually genuine positives. It illustrates the 

model's capacity to locate instances of success. Recall 

performance for BP is the highest (94.25%), followed 

by PCA-BP (91.22%), and the Neural Network 

(90.36%). This suggests that BP is the best at 

identifying good examples. The harmonic mean of 

precision and recall, or the F1-score (for classification), 

provides a fair assessment of a model's performance. 

The Neural Network comes in second with an F1-score 

of 89.75%, followed by PCA-BP with an F1-score of 

88.52%. since of its superior F1-score, PCA-BP is a 
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solid option for classification jobs since it successfully 

balances precision and recall. 

6. Conclusion 

Real-time monitoring of water quality in aquaculture 

using IoT sensors and cloud-based analytics has proven 

to be a game-changing innovation. The purpose of this 

conclusion is to highlight the significance of this 

technology in aquaculture management by synthesising 

the learnings from the data and research used in this 

study. We gathered and analysed extensive data on a 

variety of water quality factors throughout our inquiry, 

including air and water temperature, light levels, 

humidity, pH levels, wind speeds, and ammonia 

nitrogen concentration. The conditions and dynamics 

of the aquatic environment can be better understood 

through the use of these data points, which helps 

aquaculture professionals make more informed 

decisions. Our analysis of a variety of models, 

including Back-Propagation (BP), PCA-Back-

Propagation (PCA-BP), and conventional Neural 

Networks, shows how machine learning techniques can 

improve the accuracy of water quality prediction and 

monitoring. Particularly, PCA-BP has superior 

accuracy, precision, and F1-score performance, 

demonstrating its appropriateness for classification 

applications. The Neural Network, on the other hand, 

performs well in regression tasks as seen by its low 

Mean Squared Error (MSE) and high R Square values. 

The trend and pattern in water quality metrics over 

time is further highlighted by the visual display of our 

data in graphs and plots. These visualisations offer a 

simple way for users to comprehend complex data and 

spot abnormalities or potential areas for development 

in aquaculture operations. The aquaculture will greatly 

benefit from the introduction of real-time water quality 

monitoring using IoT sensors and cloud-based 

analytics. This technology provides farmers with exact, 

current information on their aquatic habitats, enabling 

them to make timely adjustments and allocate 

resources more effectively. Along with improving 

forecast accuracy, the use of machine learning models 

in aquaculture systems ensures the health and 

sustainability of those systems. The use of IoT-based 

water quality monitoring is a major step towards 

effective and sustainable practises as aquaculture 

continues to play a significant role in ensuring global 

food security. Aquaculture professionals can minimise 

risks, cut down on resource waste, and ultimately help 

to produce high-quality fish responsibly for a rising 

population by utilising data-driven insights. 
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